
DISTRIBUTED OPERATING SYSTEMS

UNIT 1

Evolution to Group Communication

Dr.K.Geetha

Associate Professor of Computer Science

Periyar Arts College

Cuddalore

Syllabus
 SEMESTER –III MAIN PAPER -9 DISTRIBUTED OPERATING SYSTEMS

 UNIT-I

 Evolution –Models – Popularity - Distributed Operating System – Issues –

Distributed Computed Environment - Features of a Good Message Passing – Issues-

Synchronization –Buffering - – Multi data gram Messages – Encoding and Decoding of

Message Data – Process Addressing – Failure Handling – Group Communication.

 UNIT-II

 The RPC Model –Transparency – Implementation – Stub – Messages –

Marshaling – Server Management –Parameter Passing Semantics – Call Semantics –

Communication protocols – Complicated – Client server Binding – Exception Handling

– Security – Special types – Heterogeneous – Light Weight – Optimization

 UNIT-III

 Clock Synchronization – Event Ordering – Mutual Exclusion – Deadlock –

Election Algorithms - Process Migration – Threads.

 UNIT–IV

 Meet Hadoop: Data - Data Storage and Analysis - Comparison with Other

Systems - A Brief History of Hadoop - The Apache Hadoop Project – Map Reduce: A

Weather Dataset - Analyzing the Data with UNIX Tools - Analyzing the Data with

Hadoop - Scaling Out – Hadoop Streaming - Hadoop Pipes

Dr.K.Geetha 2

Syllabus
 UNIT-V

The Configuration API - Configuring the Development Environment - Running Locally

on Test Data - Running on a Cluster - The Map Reduce Web UI - Using a Remote

Debugger - Tuning a Job - Map Reduce Workflows

 TEXT BOOKS

1. Pradeep K. Sinha, “Distributed Operating

System Concepts and Design”, PHI, New

Delhi,2007.

2. Tom White, “Hadoop: The Definitive Guide”,

Published by O’Reilly Media, Third Edition, 2009

Dr.K.Geetha 3

 Operating systems

Memory Management

◦Allocation

◦De Allocation

◦Keeping track of memory space

◦Handling free areas

◦Processor Management

Process status

Allocation

Release

Dr.K.Geetha 4

Operating Systems
Device Management

Hardware devices

Allocation

Release

Keeping track

 Information Management

◦ keeps the track of information its location.

◦ Who gets what data, when

◦ Open,read,write and close files

Dr.K.Geetha 5

Operating Systems

 Protection and Security

 Networking

 Accounting

 Error Detection

 Resource Allocation

 Sharing

 Resource Manager

Dr.K.Geetha 6

Distributed Operating System

To make it possible

 A collection of independent computers

appears to be as a single computer

Dr.K.Geetha 7

Computer Architecture

Multiprocessors

1. Tightly Coupled Systems(Parallel

Processing Systems)

◦ Single System Memory Shared by all

Processors

CPU

CPU

CPU

INTERCONNECTION HARDWARE

MEMORY

Dr.K.Geetha 8

Computer Architecture

2. Loosely Coupled Systems(Distributed

Computing Systems)

 Processors have their own local memory

and communicate between them

Dr.K.Geetha 9

Distributed Computing System

 Collection of processors interconneted

by Network

 Each processor has local memory and

peripherals

 Communicate by message passing

Dr.K.Geetha 10

Evolution of Distributed Computing

Systems
Early Computers

 Job SetUp Time

 Batch Processing

 Time Sharing

 Mini Computers

 MicroProcessors

 LANs/WANs

◦ Merging of Computers and Networking-
Distributed Computing Systems(1970s)

Dr.K.Geetha 11

Distributed Computing System

Models

Distributed Computing Systems

Mini Computer

Work Station

Work Station-Server

Processor Pool

Hybrid

Dr.K.Geetha 12

Mini Computer Model

Dr.K.Geetha 13

Mini Computer Model

 Different databases on different remote

machines

 Extension of time sharing systems

 Multiple users simultaneous login

 Example

ARPANET

Dr.K.Geetha 14

Work Station Model

Dr.K.Geetha 15

Work Station Model

 Idle workstation in big campus

 Issues

◦ Finding idle ws

◦ How to transfer job

◦ Suppose if it starts working?

Dr.K.Geetha 16

Work station model -issues

Third issue solving

 Simultaneous performance

 kill the remote process

 migrate the remote process to home

Dr.K.Geetha 17

Work Station Server Model

Dr.K.Geetha 18

Work-Station Server Model

 Diskful workstations

 Diskless workstations

 Cheaper

 Fast

 No process migration needed

 Request Response protocol

Dr.K.Geetha 19

Processor Pool Model

Dr.K.Geetha 20

Processor Pool Model

 Most of the time user does not need

computing power

 Processors are gathered

 Users share whenever needed

 Terminals are diskless workstations

 Better utilization of processors

 Greater Flexibility

 Unsuitable for graphics or window system

 Low speed

Dr.K.Geetha 21

Hybrid Model

 Out of the four models WS-Server model is

popular

Because

Suitable for interactive jobs

Processor-pool model is suitable for

Massive applications which need

computations

Dr.K.Geetha 22

Hybrid Model

Processor
pool model

Ws-server
model

Hybrid
model

Dr.K.Geetha 23

Distributed Systems & Its Popularity

 Traditional centralized systems

 Distributed systems

DS are difficult to design and implement

 Effectively using the resources

 Security and Communication is a

problem

 Performance is network dependent

Dr.K.Geetha 24

 Special softwares needed to

◦ Handle loss of messages

◦ Prevent overloading of messages

◦ Handle shared resources

◦Inherently Distributed systems

◦Air line reservation system

◦Banking systems

Dr.K.Geetha 25

Distributed Systems & Its Popularity

Information Sharing among Distributed

Users

 Efficient Person-Person Communication

 Sharing information over great distances

 Eg Proje

 Computer Supported co operative

work(CSCW) or groupware

Resource Sharing

 Sharing of S/W libraries and database

Dr.K.Geetha 26

Distributed Systems & Its Popularity

Better Price-Performance Ratio

Important reason for popularity

Increased power

Decreased price of processors

Increasing speed of networks

Resource sharing

Dr.K.Geetha 27

Distributed Systems & Its Popularity

Shorter Response time and higher

Throughput

 Response time

 Throughput

Higher Reliability

 Degree of tolerance against errors

 Increased Availability

 But reliability comes at the cost of

performance

 Dr.K.Geetha 28

Distributed Systems & Its Popularity

Extensibility and Incremental Growth

Gradually extended to include resources

Called open Distributed Systems

Better Flexibility

Combination of different types of computers

Flexible to do any task

Dr.K.Geetha 29

Distributed Systems & Its Popularity

What is a Distributed OS?

os

Network
OS

Distributed
OS

Dr.K.Geetha 30

Differences

Metrics Network OS Distributed OS

System

Image

The Users are aware that

multiple systems are used

Virtual Uniprocessor

The User knows in which

machine his job is executed

Unaware of this information

User know where his

information is stored

Does not know

Explicit commands for file

transfer

Same Commands

Control over file placement is

manual

Automatic

Dr.K.Geetha 31

Metrics Network OS Distributed OS

Autonomy Each Computer is independent Not independent

Have local OS Common OS

Degree of autonomy is high Low

Fault

Tolerance

Capability

Little or No fault tolerance

capability

High Fault tolerance

Dr.K.Geetha 32

Differences

ISSUES IN DESIGNING

DISTRIBUTED OS
Differences in the complexity of the Design between

traditional system and Distributed system

A Centralized Os can request status information and
is available

 A distributed OS cannot have Complete information
about the system is not available

Centralized Os- Resources are nearer

 Distributed Os-Faraway

Centralized Os- Common Clock

 Distributed OS- No Common clock, Lack of UP to
date information

Dr.K.Geetha 33

ISSUES

Transparency

Reliability

Flexibility

Performance

Scalability

Heterogeneity

Security

Dr.K.Geetha 34

ISSUES IN DESIGNING

DISTRIBUTED OS
A lot of issues

But

 flexible,

efficient,

reliable,

secure, and

easy to use.

Dr.K.Geetha 35

Transparency
 Single Virtual Uniprocessor image

 Eight forms of transparency

 Access transparency

 Location transparency,

 Replication transparency,

 Failure transparency,

 Migration transparency

 Concurrency transparency,

 Performance transparency, and

 Scaling transparency

Dr.K.Geetha 36

Transparency
 Access transparency

 user cannot recognize a resource local or
remote

Remote resources in the same way as
local

Uniform system calls

Distributed shared memory concept

 Suitable for limited types

 Performance limitation

Dr.K.Geetha 37

Transparency

Location
Transparency

Name
Transparency

User
Mobility

Dr.K.Geetha 38

Name Transparency

Name does not reveal location

Movement of files need not change
the names

Resource names are unique

User Mobility

Same name for accessing from
different locations

Users access without any extra effort

Transparency

Dr.K.Geetha 39

Replication Transparency

Creating Replicas of files

on another systems

Should be transparent

Issues

Naming of replicas and

Replication control.

Transparency

Dr.K.Geetha 40

Transparency
 Failure Transparency

 communication link failure,

 a machine failure, or

 storage device crash

 All types of failures cannot be handled in a
user transparent manner.

 Theoretically possible, Practically not
possible

Dr.K.Geetha 41

Transparency
Migration Transparency

 Migration decisions should be automatic

 Migration should not require any change

in name

 If the receiver moves to another location

the sender need not resend it.

Concurrency Tranparency

 Using the system concurrently

 Concurrent update of the same file should

not be allowed

Dr.K.Geetha 42

Transparency

Concurrncy
Resource
sharing

mechanism

Event Ordering
Property

No Starvation
Property

Mutual Exclusion
Property

No Deadlock
Property

Dr.K.Geetha 43

Transparency
Performance Transparency

Loads vary dynamically

Processors should be uniformly distributed

To allow system to reconfigure

Intelligent resource allocation and migration

facility

Scaling Transparency

To allow system to expand

Open System Architecture

Use of scalable algorithms

Dr.K.Geetha 44

Reliability

Reliability

Fault
Avoidance

Fault
Detection/Recovery

Fault
Tolerance

Dr.K.Geetha 45

 Reliability

Fault Avoidance

To design to minimize the occurrence of faults

The Designers should test.

Fault Tolerance

Ability of the system to function in the event

of partial failure

Techniques to improve fault tolerance

Redundancy Techniques

To avoid single point of failure

Hardware and software components are

replicated.

Additional system overhead is needed to

maintain replicas.
Dr.K.Geetha 46

 Reliability

 said to be k-fault tolerant if it can continue to

function even in the event of the failure of k

components

Distributed Control

 Distributed control mechanism to avoid single

points of failure.

1. Fault Detection and Recovery

 Use of H/W and S/W to detect failure and

recover from it.

Techniques:

Atomic Transactions

Collection of operations that takes place in a failure

 Dr.K.Geetha 47

 Reliability

2. Stateless Servers

Client -
server

Stateful Stateless

Dr.K.Geetha 48

 Reliability
3. Acknowledgements and time-outs based

retransmissions

Duplicate messages are a problem

here

Detection and handling of

Duplicate messages

Generating and assigning Sequence

Numbers

Extra Overhead to detect these

Integrate all these things in a cost-

effective manner Dr.K.Geetha 49

 Flexibility

 Why Di s.Os should be flexible?

 Ease of modification

 Ease of enhancement

The important design factor is

 Designing the kernel of the OS

Kernel Monolithic Kernel

Micro Kernel

Dr.K.Geetha 50

Flexibility
 Monolithic Kernel

◦ All functions are provided by such kernel

◦ Big structure

◦ UNIX

◦ Micro Kernel

 To Keep Kernel as small as possible

 OS provides minimum facilities

 Services provided is inter process

communication

 Low Device mgmt

 Mem. Management

 other services as user level server

processes.

Dr.K.Geetha 51

 Flexibility

Dr.K.Geetha 52

User
Applications

• Monolithic
Kernel

User
Applications

• Monolithic
Kernel

User
Applications

• Monolithic
Kernel

Network Hardware

Node1 Node 2 Node n

MONOLITHIC KERNEL

Microkernel

User
Applications

Server Manager
Modules

Microkernel

User
Applications

Server Manager
Modules

Microkernel

User
Applications

Server Manager
Modules

Microkernel

Dr.K.Geetha 53

Node 1 Node 2 Node n

Network Hardware

 Flexibility
Monolithic Model Microkernel Model

Major OS services are provided by the kernel Only minimal facilities and services

are provided

Kernel has a large monolithic structure Size of the kernel is small

No such thing User level server processes services

Large size reduces flexibility Increased flexibility

Reduced Configurability Highly modular in nature

complex Easy to modify

complex Easy to add services

Changes can be done by interrupting users Without interrupting users, the

changes can be performed In the OS

No the servers have to use some form of

message-based interprocess

communication mechanism

No Message passing requires context

switches

Dr.K.Geetha 54

Performance
 Design principles in order to achieve Good Performance are

 1. Batch if possible

◦ Large pages transfer instead of small

◦ Piggybacking acknowledgement

◦ 2. Cache whenever possible

◦ Makes data available

◦ Saving large amount of Computing time and bandwidth

◦ 3.Minimize copying data

 Data path

 Senders Stack Message buffer Kernels

message buffer

 Network Interface Board

Dr.K.Geetha 55

 Performance

 4. Minimize network traffic.

◦ migrating a process closer to the resources

◦ to cluster two or more processes that

frequently communicate with each other

on the same node of the system

 5. Take advantage of fine-grain parallelism for

multiprocessing

◦ Threads

◦ concurrency control of simultaneous

accesses by multiple processes to a shared

resource
Dr.K.Geetha 56

Scalability
 capability of a system to adapt to increased

service load.

 Principles for designing scalable systems

1. Avoiding centralized entities

 The failure of the centralized entity often

brings the entire system down.

Hence, the system cannot tolerate faults

Even if the centralized entity has enough

processing and storage capacity, the capacity of

the network saturated

In a wide-area network consisting increases

network traffic.

The increased users increases the complexity
Dr.K.Geetha 57

Scalability
 2. Avoid centralized algorithms.

◦ This algorithm collects information from all

nodes

 The complexity of the algorithm is O(n2)

◦ It creates heavy network traffic and quickly

◦ consumes network bandwidth. Therefore, in

the design of a distributed operating system,

only decentralized algorithms should be used.

 3. Perform Most operations on a client

network

Dr.K.Geetha 58

Heterogeneity
 Interconnected set of dissimilar hardware

and software

 The following things are different

◦ Communication protocols

◦ Topologies

◦ Servers

We need translation servers

Intermediate standard data format

Dr.K.Geetha 59

Security
 In a centralized system, all users are authenticated

by the system at login time,

 system can easily check whether a user is

authorized to perform the requested operation on

an accessed resource.

 In a distributed system this is not possible.

 So Design should include to know

◦ Whether message received by the receiver

◦ Message sent by a genuine sender

◦ The content of the message is not altered

Cryptography and integrity(Trusting smaller

servers rather than clients)

Dr.K.Geetha 60

 Emulation of Existing

Operating Systems

 New OS should allow the old features of old

OS also

Dr.K.Geetha 61

DISTRIBUTED COMPUTING

ENVIRONMENT (DCE)
 it is an integrated set of services and

tools that can be installed as a coherent

environment on top of existing

operating systems and serve as a

platform for building and running

distributed applications.

 OPEN SOFTWARE FOUNDTION

Dr.K.Geetha 62

DCE APPLICATIONS

DCE SOFTWARE

OPERATING SYSTEMS

NETWORKING

DCE Creation
 Middleware software layer

 Request for Technology

DCE components

Threads Package

 Provides a simple model for concurrent

applications

RPC facility

 Basis for all communication facility

 Easy to use

 Network independent

 Protocol independent

 Provides Secure Communication

Dr.K.Geetha 63

DCE Creation
 Distributed Time Service

Synchronizes clocks of all systems

Permits the use of time values

Clocks of one DCE can be synchronized with the other

 Name Services

 Cell Directory Service(CDS)

 Global Directory Service(GDS)

 Global Directory Agent(GDA)

 Allow resources such as servers, files and devices files

with unique name.

 Security Service

 Provides tools needed for authentication and authorization

 Distributed File Service(DFS)

 Provides services such as availability, transparency

Dr.K.Geetha 64

DCE Components

Dr.K.Geetha 65

Reference:Pradeep K.Sinha, Distributed operating System Concepts and

Design

DCE CELLS
 DCE uses the concept of cells.

 Breaks down a large system into smaller,

manageable units called cells

 a cell is a group of users, machines, or

other resources that typically have a

common purpose and share common

DCE services.

 The minimum cell configuration requires

cell directory server,

security server,

a distributed time server,

and one or more client machines.

Dr.K.Geetha 66

DCE CELLS
 Boundaries

Purpose:

◦ Machines of common goal will be put in the

same cell.

◦ Product oriented or function oriented cells

Administration: Each system needs an

administrator

 All the Machines and administrators are put in

same cell

 For example, all machines

 belonging to the same department of a company

or a university can belong to a single cell.

 From an administration point of view,each cell

has a different administrator.
Dr.K.Geetha 67

 DCE CELLS
Security

 users who have trust in each other should be

put in the same cell.

 In such a design, cell boundaries act like

firewalls in the sense that accessing a resource

that belongs to another cell requires

authentication than accessing a resource that

belongs to a user's own cell

Overhead.

 machines of users who frequently interact

 and the resources frequently accessed by them

should be placed in the same cell..

Dr.K.Geetha 68

 Distributed Computing System

 A collection of processors inter

connected by a communication

network in which each processor has

its own local memory and other

peripherals and communication

between any two processors of the

system takes place by message passing

over the communication network

Dr.K.Geetha 69

Why Di-OS?
 (a) Suitability for applications which are

distributed in nature

 (b) Sharing of information

 (c) Sharing of resources,

 (d) Better Performance-price ratio,

 (e) Shorter response times

 (f) Higher throughput

 (g) Higher reliability,

 (h) Extensibility and incremental growth

 (i) Flexible in meeting users' needs

Dr.K.Geetha 70

MESSAGE PASSING

Dr.K.Geetha 71

 Introduction

Processes communicating with each other

 Distributed operating systems provide IPC

 Methods for sharing information are

1. Original sharing, or shared-data approach

2. Copy sharing, or message-passing approach

Message
Sharing

Original
Sharing

Copy
sharing

Dr.K.Geetha 72

 Basic Methods for sharing data

Copy sharing

Original Sharing

Dr.K.Geetha 73

Message Passing System

subsystem of a distributed operating system

 provides a set of message-based IPC

 protocols.

 enables processes to communicate by

exchanging messages

 simple communication primitives, such

as send and receive.

Dr.K.Geetha 74

Desirable Features of a Good Message

Passing System

Simplicity

Uniform Semantics

Efficiency

Reliability

Correctness

Flexibility

Security

Portability

Dr.K.Geetha 75

 Simplicity

Message Passing System should be

 Simple

 Easy to Use

 Straight forward to construct new

 applications

 Clean and Simple Semantics of IPC

 Protocols

Dr.K.Geetha 76

Uniform Communications

Inter process
communication

Local
Communication

Remote
Communication

Dr.K.Geetha 77

 Efficiency

If MPS not Efficient is cost increases

Avoiding the costs of establishing

and terminating connections

Minimizing the costs of maintaining

the connections

 Piggybacking of acknowledgment of

previous messages with the next

message

Dr.K.Geetha 78

 Reliability

Acknowledgments and

retransmissions on the basis of

timeouts

Detecting and handling

duplicates

Generating and assigning

appropriate sequence numbers

to messages

Dr.K.Geetha 79

 Correctness

Issues related to correctness are

Atomicity Message sent to every

receivers

Ordered delivery Messages are in

sequence

Survivability Messages will be

delivered in spite of failures.

Survivability is a difficulty property to achieve.

Dr.K.Geetha 80

 Flexibility

IPC primitives should be such that the

users have the flexibility to choose

and specify the types and levels of

reliability

have the flexibility to permit any kind

of control flow between the

cooperating processes, including

synchronous and asynchronous

send/receive.

Dr.K.Geetha 81

 Security
Secure end-to-end communication.

 Authentication of the receiver of a

message by the sender

 Authentication of the sender of a

message by its receiver

 Encryption of a message before sending

it over the network

Dr.K.Geetha 82

 Portability

 Message passing

 should be portable

 Portability

 The applications

 should be portable

Dr.K.Geetha 83

 Issues in IPC Message Passing

Actual

Data or

Pointer

to data

Structral information Sequence

No

Addresses

Number of

bytes

Type Sending

address

Receiving

Address

Who is the sender?
Who is the receiver?
One or more receivers?
Message guaranteed?
Sender waits for reply?
Node crash? What to do?
Buffering?
Outstanding Messages?

Header and messages

Dr.K.Geetha 84

 SYNCHRONIZATION

Semantics

Blocking

Non
Blocking

Synchronization Communication

Primitives

Dr.K.Geetha 85

Non blocking

◦ Invocation does not does not block the

execution of the invoker

 Blocking

◦ blocks

 Send primitive

 SYNCHRONIZATION

Dr.K.Geetha 86

 SYNCHRONIZATION

Sender--Blocked Receiver

 send

Blocked Blocked

 receive

 Ack

 Continue

Dr.K.Geetha 87

How the receive process know the message

has arrived?

Polling

Interrupt

 conditional receive primitive, returns

control to the invoking process almost

immediately, either with a message or

with an indicator that no message is

available.

SYNCHRONIZATION

Dr.K.Geetha 88

SYNCHRONIZATION

Dr.K.Geetha 89

Ref: P.K.Sinha “ Distributed Os Concepts and Design”

DIFFERENCES

SYNCHRONOUS ASYNCHRONOUS

Simple & Easy to implement Not a simple method

Reliable Not reliable

If the message gets lost, no

backward error recovery is

required

Error recovery is needed

It limits concurrency No such limitation

Subject to communication

Deadlocks

No

Less Flexible Flexible

Dr.K.Geetha 90

Buffering

copying the body of the message from the

address space of the sending process to

the address space of the receiving

process.

Types

a null buffer, or no buffering,

and a buffer with unbounded capacity.

single-message and finite-bound,

multiple-message, buffers.

Dr.K.Geetha 91

 Buffering

Null Buffer or No Buffering

No place for the temporary storage of

message

Message remains in the senders address

space until receiver executes the receive

Dr.K.Geetha 92

Message

Dr.K.Geetha 93

 Buffering

Sender sends
the message

Sender is
blocked

Sender
unblocked

Receiver

Executes
receive

Sender can
send message

Ack

Message
Transferred

 Buffering

Dr.K.Geetha 94

 Single Message Buffer- suitable for synchronous

 Node Boundary

 Message
Single Message

Buffer

 Multiple Message Buffer

Dr.K.Geetha 95

Sender

Receiver

Message n

Message 2

Message3

Message 1

Buffering

Finite Buffer-
Buffer overflow

Unsuccessful
Communication

Flow
Controlled

Communication

Dr.K.Geetha 96

 Buffering

When Message transfer fails

without buffers. Send

indicates error message. Less

reliable method

Senders blocked.

Creates space

 Create_buffer system call

 Creates a buffer of size specified by

receiver.

 Receivers mail box or kernels address

space located

 More complex to design

 Overhead involved for creation, deletion

and maintenance of buffers

Dr.K.Geetha 97

 Buffering

MUlTIDATAGRAM MESSAGES
 MTU-Maximum Transfer Unit

 If Message > MTU segmented and

fragmented messages

Dr.K.Geetha 98

Messages

Single
Datagram

Multi
Datagram

 MUlTIDATAGRAM MESSAGES

 Single Datagram

Messages <MTU of the network can be

sent in a single packet

Multi Datagram

Messages> MTU sent in multiple packets.

 The disassembling into multiple packets

on the sender side and the

reassembling on the receiver side is

the responsibility of the message-

passing system.

 Dr.K.Geetha 99

ENCODING AND DECODING OF

MESSAGE DATA

 structure of program objects should be

preserved while they are being

transmitted

 not possible in a heterogeneous

 in homogeneous systems, it is very

difficult to achieve this goal mainly

because of two reasons

-An absolute pointer value loses its meaning

during transfer. Example tree object

-Varying amount of storage space.

Dr.K.Geetha 100

ENCODING AND DECODING OF

MESSAGE DATA

 problems are there in transferring

program objects in their original form,

 they are first converted to a stream form

that is suitable for transmission

 This conversion process takes place on

the sender side and is known as encoding

of a message data.

 This conversion process takes place on

the receiver side and is known as

decoding of a message data.

Dr.K.Geetha 101

ENCODING AND DECODING OF

MESSAGE DATA

E
n
co

d
in

g
an

d
 D

e
co

d
in

g
o
f

D
at

a
Tagged

Representation

Untagged
Representation

Dr.K.Geetha 102

Type of

each

Program

object

1.Program

object only

2.Prior

knowledge

PROCESS ADDRESSING

 Naming of the Parties involved in communication

Dr.K.Geetha 103

Process
Addressing

Explicit
Addressing

Implicit
Addressing

PROCESS ADDRESSING

 Explicit addressing. The process with which

communication is desired is explicitly

given as a parameter in the

communication primitive used.

send (process_id, message)

receive (process_id, message)

Dr.K.Geetha 104

PROCESS ADDRESSING

 Implicit addressing. Does not explicitly

name

 a process for communication.

Also known as functional addressing

e.g Client server communication

 send_any (service_id, message)

 receive_any (process_id, message)

Dr.K.Geetha 105

PROCESS ADDRESSING

 identify a process is by a combination of

machine_id and local_

id, such as machine_id@local_id.

 processes can be identified by a

 combination of the following three fields:

machineld, local_id, and machineid.

Dr.K.Geetha 106

PROCESS ADDRESSING

 The first field identifies the node on

which the process is created

 The second field is a local indentifier

generated by the node on which the

process is created

 The third field identifies the last known

location (node) of the process

Dr.K.Geetha 107

 FAILURE HANDLING

 Partial failures such as a node crash

 Loss of request message.

◦ due to the failure of communication link between

the sender and receiver

◦ receiver's node is down at the time the request

message reaches

 Loss of response message.

◦ due to the failure of communication link

◦ sender's node is down at the time the response

message reaches there.

 Unsuccessful execution of the request.

◦ crashing while the request is being processed.

Dr.K.Geetha 108

Dr.K.Geetha 109

 SENDER • RECEIVER

• Send Req

Request Message

Lost

LOSS OF REQUEST MESSAGE

Dr.K.Geetha 110

• RECEIVER • SENDER

REQUEST

RESPONSE

REQ
SUCESSS

SEND
RESPONSE

LOST

LOSS OF RESPONSE

Dr.K.Geetha 111

SENDER RECEIVER

CRASH

RESTARTED

SEND
REQ

REQUEST
MESSAGE

UNSUCCESSFUL
REQUEST

Dr.K.Geetha 112

• RECEIVER • SENDER

REQUEST

ACK

REQ
SUCESSS

SEND
ACK

REPLY

ACK

FOUR WAY PROTOCOL

Dr.K.Geetha 113

• RECEIVER • SENDER

REQUEST

REQ
SUCESSS

SEND
ACK

REPLY

ACK

THREE WAY PROTOCOL

Dr.K.Geetha 114

• RECEIVER • SENDER

REQUEST

REQ
SUCESSS

SEND
ACK

REPLY

TWO WAY PROTOCOL

Dr.K.Geetha 115

CLIENT SERVER

SEND REQUEST

LOST

RETRANSMIT

RETRANSMIT REQ

RESPONSE MESSAGE

RETRANSMIT REQ

RESPONSE MESSAGE

Fault tolerant Communication Between
 client- Server

Idempotency and Handling or

Duplicate Request Messages

 Repeatability

 produces the same results with same

arguments.

 Eg. Sqrt finding

Not the same results

Eg. Debit(amount)

Dr.K.Geetha 116

Dr.K.Geetha 117

Debit 100

client server

Success debit 100 =900

1000

Retransmit Request

Balance 800

Time Out

Dr.K.Geetha 118

Debit 100

client server

Success debit 100 =900

1000

Retransmit Request

Balance 800

Request Id Reply to be

sent

Request 1 900

Time Out

 lost and Out-of-Sequence Packets

 For successful completion of a

multidatagram message transfer, reliable

delivery of every packet is important.

 Reliability Ack for

each pkt

◦ Stop and Wait Protocol

◦ Called Blast Protocol

 link failure leads to Ack for all

◦ Message Loss

◦ Out of sequence

Dr.K.Geetha 119

 Selective Repeat

 Header Part two extra fields

◦ First field buffer size

◦ Second Position of packet

◦ After timeout not received pakets will be sent

using bitmap

Dr.K.Geetha 120

 lost and Out-of-Sequence Packets

 Group Communications

Group
Communications

One to many

Many to one

Many to Many

Dr.K.Geetha 121

 One-to-Many Communication

◦ Also known as multicasting

◦ Broadcasting is a special case

• Group Management

closed and open.

 only members can

communicate

 Any member can

communicate

Dr.K.Geetha 122

 Group Communications

 Group Addressing

 A special network address to which

multiple machines can listen. Such a

network address is called a Multicast

Address.

 A packet sent to a broadcast address is

automatically delivered to all machines on

the network.

 Otherwise one-one communication.

Dr.K.Geetha 123

 Group Addressing

 Buffered and Un-Buffered Multicast

1. A sending process cannot wait until all

the receiving processes that belong to the

multicast group are ready to receive the

multicast message.

2. The sending process may not be aware of

all the receiving processes that belong to

the multicast group.

Dr.K.Geetha 124

 Group Addressing
 Semantics for one-to many

communications:

1. Send-to-all semantics. A copy of the

message is sent to each process of the

multicast group and the message is buffered

until it is accepted by the process.

2. Bulletin-board semantics. A message to be

multicast is addressed to a channel instead

of being sent to every individual process of

the multicast group. From a logical

Dr.K.Geetha 125

Flexible Reliability in Multicast

Communication
 Degree of Reliability depends on

 The O-Reliable. asynchronous multicast in

which the sender does not wait for any

response after multicasting the message.

 The 1-Reliable. The sender expects a

response from any of the receivers. The

first server that responds is an example of

l-reliable multicast communication.

Dr.K.Geetha 126

Flexible Reliability in Multicast

Communication

3. M-out-of-N-Reliable. The multicast group

consists of n receivers and the sender

expects a response from m (1<m<n) of

the n receivers.

4. All-reliable. The sender expects a

response message from all the receivers

of the multicast group

Dr.K.Geetha 127

 GROUP COMMUNICATION

 PRIMITIVES
 Send

 Send-group

Many-One Communication

 Non-Determinism. The receiver may

want to wait for information from any of

a group of senders

Many-Many Communication

Issues

Ordered Delivery

Message sequencing

Dr.K.Geetha 128

 Absolute Ordering

 Consistent Ordering

 Casual Ordering

Absolute ordering

 Messages are delivered in exact order

 Global time stamps are used

Consistent order

 This order may be different from the

order in which messages were sent

Dr.K.Geetha 129

GROUP COMMUNICATION PRIMITIVES

 Casual Order

 If two message sending events are not

causally related, the two messages may be

delivered to the receivers in any order.

 Happened before relation-One event

should happen before the another in the

time domain.

Dr.K.Geetha 130

 GROUP COMMUNICATION PRIMITIVES

REFERENCE

Pradeep K. Sinha, “Distributed Operating

System Concepts and Design”, PHI, New

Delhi,2007.

Dr.K.Geetha 131

