
UNIT 4

Swapping

Swapping is a mechanism in which a process can be swapped

temporarily out of main memory (or move) to secondary storage (disk)

and make that memory available to other processes. At some later time,

the system swaps back the process from the secondary storage to main

memory.

Though performance is usually affected by swapping process but it

helps in running multiple and big processes in parallel and that's the

reason Swapping is also known as a technique for memory

compaction.

The total time taken by swapping process includes the time it takes

to move the entire process to a secondary disk and then to copy the

process back to memory, as well as the time the process takes to regain

main memory.

Let us assume that the user process is of size 2048KB and on a

standard hard disk where swapping will take place has a data transfer

rate around 1 MB per second. The actual transfer of the 1000K process

to or from memory will take2048KB / 1024KB per second

2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000

milliseconds plus other overhead where the process competes to regain

main memory.

 Memory Swapping

• Memory swapping is a computer technology that enables an

operating system to provide more memory to a running

application or process than is available in physical random

access memory.

• When the physical system memory is exhausted, the operating

system can opt to make use of memory swapping techniques to

get additional memory.

• Memory swapping is among the multiple techniques for

memory management in modern systems.

• Physical memory alone is sometimes not sufficient, which is

why there are different ways of augmenting RAM in a system

with these additional options.

How Memory Swapping Improves Performance

• Memory swapping works by making use of virtual memory and

storage space in an approach that provides additional resources

when required.

• In short, this additional memory enables the computer to run

faster and crunch data better.

• With memory swapping, the operating system makes use of

storage disk space to provide the functional equivalent of

memory storage execution space.

• The space on the storage device is referred to as "swap space"

and is used to run processes that have been swapped out of main

physical memory.

• The process of memory swapping is managed by an operating

system or by a virtual machine hypervisor. Swapping is often

enabled by default, though users can choose to disable the

capability.

• The actual memory swapping process and the creation of a swap

file is automatically managed by the operating system. It is

initiated when needed as physical RAM is used and additional

capacity is required by processes and applications. As additional

RAM is required, the state of the physical memory page is

mapped to the swap space, enabling a form of virtual (non-

physical RAM) memory capacity.

• In other words, the main purpose of swapping in memory

management is to enable more usable memory than held by the

computer hardware.

• There are times when physical memory will be allocated and a

process needs additional memory. Rather than limiting a system

to only having memory that is based on physical RAM, memory

swapping enables operating systems and their users to extend

memory to disk.

• Memory swapping is an essential component of modern

memory management helping to ensure availability and overall

system stability.

What is Swap Space or Swap File?

Swap space is storage space that is used as temporary memory

capacity, when physical memory space is already exhausted. The swap

file is the physical disk storage file for swap space that is used by an

operating system to extend usable memory.

Understanding swap file and swap space is all about understanding

memory management. Physical memory in a modern operating system is

segmented in different ways, using virtual memory as an abstraction to

combine both physical RAM and often swap space, as usable RAM for

application processes. In memory management, operating systems make

use of a page table to segment and define different memory locations.

With memory swapping, the contents of memory stored in a physical

element of the page table are copied to disk to maintain the same state

for processes.

A swap file and its associated page of memory can be restored to

different areas of a system's virtual memory as physical memory is

reclaimed over time by the operating system.

The process of how to check swap memory can vary based on

operating system. In Microsoft Windows operating systems, information

about swap memory is listed under task manager as virtual memory. In

Linux, swap space can be checked from the command line with by

typing 'swapon-s', which will show allocated swap space usage.

Advantages of Memory Swapping

• More Memory. Memory swapping is a critical component of

memory management, enabling an operating system to handle

requests that would otherwise overwhelm a system.

• Continuous Operations. Swap file memory can be written to disk

in a continuous manner, enabling faster lookup times for

operations.

• System Optimization. Application processes of lesser importance

and demand can be relegated to swap space, saving the higher

performance physical memory for higher value operations.

Limitations of Memory Swapping

• Performance. Disk storage space, when called up by memory

swapping, does not offer the same performance as physical RAM

for process execution.

• Disk Limitations. Swap files are reliant on the stability and

availability of storage media, which might not be as stable as

system memory.

• Capacity. Memory swapping is limited by the available swap

space that has been allocated by an operating system or hypervisor.

Bit Map for Dynamic Partitioning

• The Main concern for dynamic partitioning is keeping track of all

the free and allocated partitions. However, the Operating system

uses following data structures for this task.

1. Bit Map

2. Linked List

• Bit Map is the least famous data structure to store the details. In

this scheme, the main memory is divided into the collection of

allocation units. One or more allocation units may be allocated to

a process according to the need of that process. However, the size

of the allocation unit is fixed that is defined by the Operating

System and never changed. Although the partition size may vary

but the allocation size is fixed.

• The main task of th

the partition is free or filled. For this purpose, the operating system

also manages another data structure that is called bitmap.

• The process or the hole in Allocation units is represented by a flag

bit of bitmap. In the image shown below, a flag bit is defined for

every bit of allocation units. However, it is not the general case, it

depends on the OS that, for how many bits of the allocation units,

it wants to store the flag bit.

• The flag bit is set to 1 if

the adjacent bit in allocation unit otherwise it is set to 0.

• A string of 0s in the bitmap shows that there is a hole in the

relative Allocation unit while the string of 1s represents the process

in the relative allocation unit.

System and never changed. Although the partition size may vary

but the allocation size is fixed.

The main task of the operating system is to keep track of whether

the partition is free or filled. For this purpose, the operating system

also manages another data structure that is called bitmap.

The process or the hole in Allocation units is represented by a flag

itmap. In the image shown below, a flag bit is defined for

every bit of allocation units. However, it is not the general case, it

depends on the OS that, for how many bits of the allocation units,

it wants to store the flag bit.

The flag bit is set to 1 if there is a contiguously present process at

the adjacent bit in allocation unit otherwise it is set to 0.

A string of 0s in the bitmap shows that there is a hole in the

relative Allocation unit while the string of 1s represents the process

allocation unit.

System and never changed. Although the partition size may vary

e operating system is to keep track of whether

the partition is free or filled. For this purpose, the operating system

also manages another data structure that is called bitmap.

The process or the hole in Allocation units is represented by a flag

itmap. In the image shown below, a flag bit is defined for

every bit of allocation units. However, it is not the general case, it

depends on the OS that, for how many bits of the allocation units,

there is a contiguously present process at

the adjacent bit in allocation unit otherwise it is set to 0.

A string of 0s in the bitmap shows that there is a hole in the

relative Allocation unit while the string of 1s represents the process

Disadvantages of using Bitmap

1. The OS has to assign some memory for bitmap as well since it

stores the details about allocation units. That much amount of memory

cannot be used to load any process therefore that decreases the degree

of multiprogramming as well as throughput.

In the above image,The allocation unit is of 4 bits that is 0.5 bits.

Here, 1 bit of the bitmap is representing 1 bit of allocation unit.

Therefore, in this bitmap configuration, 1/5 of total main memory

is wasted.

2. To identify any hole in the memory, the OS ne

string of 0s in the bitmap. This searching takes a huge amount of time

which makes the system inefficient to some extent

Linked List Allocation

Linked List allocation solves all problems of contiguous allocation.

In linked list allocation,

blocks. However, the disks blocks allocated to a particular file need not

to be contiguous on the disk. Each disk block allocated to a file

contains a pointer which points to the next disk block allocated

same file.

Disadvantages of using Bitmap

1. The OS has to assign some memory for bitmap as well since it

stores the details about allocation units. That much amount of memory

cannot be used to load any process therefore that decreases the degree

of multiprogramming as well as throughput.

above image,The allocation unit is of 4 bits that is 0.5 bits.

Here, 1 bit of the bitmap is representing 1 bit of allocation unit.

Therefore, in this bitmap configuration, 1/5 of total main memory

2. To identify any hole in the memory, the OS need to search the

string of 0s in the bitmap. This searching takes a huge amount of time

which makes the system inefficient to some extent

Linked List Allocation

Linked List allocation solves all problems of contiguous allocation.

In linked list allocation, each file is considered as the linked list of disk

blocks. However, the disks blocks allocated to a particular file need not

to be contiguous on the disk. Each disk block allocated to a file

contains a pointer which points to the next disk block allocated

1. The OS has to assign some memory for bitmap as well since it

stores the details about allocation units. That much amount of memory

cannot be used to load any process therefore that decreases the degree

above image,The allocation unit is of 4 bits that is 0.5 bits.

Here, 1 bit of the bitmap is representing 1 bit of allocation unit.

Therefore, in this bitmap configuration, 1/5 of total main memory

ed to search the

string of 0s in the bitmap. This searching takes a huge amount of time

Linked List allocation solves all problems of contiguous allocation.

each file is considered as the linked list of disk

blocks. However, the disks blocks allocated to a particular file need not

to be contiguous on the disk. Each disk block allocated to a file

contains a pointer which points to the next disk block allocated to the

Advantages

1. There is no external fragmentation with linked allocation.

2. Any free block can be utilized in order to satisfy the file block

requests.

3. File can continue to grow as long as the free blocks are available.

4. Directory entry will only contain the starting block address.

Disadvantages

1. Random Access is not provided.

2. Pointers require some space in the disk blocks.

3. Any of the pointers in the linked list must not be broken

otherwise the file will get corrupted.

4. Need to traverse each block.

**

PAGING:

• Paging is a non contiguous allocation method.

• Logical memory is broken into blocks of same size called

pages

• Physical memory is broken into fixed size partition called

frames.

• The mapping of pages with frames is done using page table. The

page table consists of entry for each page along with the frame

number where the pages are stored.

CONVERSION OF LOGICAL ADDRESS TO PHYSICAL

ADDRESS:

• An address generated by the CPU i

and an address seen by memory is referred as physical address.

• In paging method logical address is divided into two parts; page

number (p)and page offset (d)where P is an index into the page

table and d is the displacement wit

• Physical address can be generated by concatenating the offset to

the frame number.

CONVERSION OF LOGICAL ADDRESS TO PHYSICAL

An address generated by the CPU is refereed as logical address

and an address seen by memory is referred as physical address.

In paging method logical address is divided into two parts; page

number (p)and page offset (d)where P is an index into the page

table and d is the displacement within the page.

Physical address can be generated by concatenating the offset to

the frame number.

CONVERSION OF LOGICAL ADDRESS TO PHYSICAL

s refereed as logical address

and an address seen by memory is referred as physical address.

In paging method logical address is divided into two parts; page

number (p)and page offset (d)where P is an index into the page

Physical address can be generated by concatenating the offset to

HARDWARE SUPPORT: (Translation look aside buffer (TLB)):

• Hardware implementation of page table can be done in many

ways.

• One way is to keep the page table in memory and a page table

base register (PTBR) points to the page table.To find particular

page we need two memory access.

• Another way to implement page table is to use associative

register or translation look aside buffer (TLB).

• The TLB contain only a few of the page table entries.

• To find a particular page first the page number is searched in

associative registers and if it is not found there then it is

searched in page table that is in memory.

PROTECTION:

• In paging method protection can be provided by protection bits

that are associated with each frame. These bits are kept in the

page table and defines whether a page to be read and write or

read only.

• One more bit is attached to each entry in the page table called

valid- invalid bit.valid indicates that the page is a legal page and

invalid indicates illegal page.

• To avoid wastage of space protection can also be provided by

using page table length register (PTLR) to indicate the size of

the page table.

MULTILEVEL PAGING:

 When page table is too large then it can be divided into smaller

pieces.One way to do this is to use two level paging schemes,in which

the page table itself is also paged.

INVERTED PAGE TABLE:

• When the page table is large it occupies more space . To solve

this problem inverted page table is used.

• An inverted page table has one entry for each real page (frame)

of memory.

• Each logical address in the system consists of < process

id,page number ,offset>.

• Each inverted page table entry is a pair of < process id,page

number >.

ADVANTAGES;

� SHARED PAGES:

• one advantages of paging is sharing common code.

• External fragmentation problem is solved.

• Multiprogramming is allowed.

� DISADVANTAGE:

• If the number of free frames available is less than the number of

page required , then memory cannot be allocated.

SHARED PAGES:

one advantages of paging is sharing common code.

External fragmentation problem is solved.

Multiprogramming is allowed.

DISADVANTAGE:

If the number of free frames available is less than the number of

page required , then memory cannot be allocated.

one advantages of paging is sharing common code.

If the number of free frames available is less than the number of

• Some frames may be allocated but unused which leads to

internal fragmentation.

• More number of tables and register has to be maintained.

SEGMENTATION:

• Segmentation is a non contiguous memory management scheme.

• In this method the logical address space is divided into

subdivisions called as segments.A segment is a logical group of

information such as subroutine ,array or any other data structure.

• The segments need not be in equal size.

• The physical address space is divided into blocks according o the

size of the segment.

• The mapping of segment and blocks are done with the help of the

segment table.

• Each entry of the segment table has a segment base and a segment

limit.The segment base contain the starting physical address where

the segment resides in memory and segment limit specifies the

length of the segment.

� CONVERSION OF LOGICAL ADDRESS TO PHYSICAL

ADDRESS:

• In segmentation method logical address is divided into two:

segment number (s) and segment offset (d)where s is an index

into the segment table and d is the displacement within the

segment.

• Physical address can be generate by concatenation the offset to

the segment base.

� HARDWARE SUPPORT:

• Hardware implementationof segment table can be done in

many ways.

• One ways is to keep the segment table in registers and refer

quickly.

• Another way is to keep the segment table in memory and a

segment table base register (STBR)points to the segment

table.To find a particular segment we need two memory

accesses.

• Another way is to use associative register that hold the most

recently used segment table entries.

� PROTECTION AND SHARING:

• Protection can be provided using protection bits associated with

each segment table entry and prevent illegal access to memory.

• Another way to provided protection is to use segment table

length register (STLR)to indicate the size.

• In segmentation method sharing of code or data is possible.

� DISADVANTAGES:

 Segmentation may cause external fragmentation when all blocks

of free memory are too small to accommodate a segment.

VIRTUAL MEMORY:

Virtual memory is a technique that allows the execution of process that

may not be completely in memory.

o CASES WHERE ENTIRE PROGRAM IS NOT NEEDED

� Programs have code that are never executed.(eg.error conditions)

� allocate more memory for array(eg.int a [10]).

� In program certain options may be rarely used.

o BENEFITS OF VIRTUAL MEMORY

� user program > physical memory.

� more programs can run at same time and increase CPU utilization

and throughput.

� user program run faster .

DEMAND PAGING:

� It is similar to paging with swapping .In this method process will

reside on secondary memory.

� The pages of the process are swapped into the memory only when

required. Swapping is performed using lazy swapper.

� Instead of swapper we use the term pager because swapper

manipulates ,entire process where as pager is concerned with

individual pages.

� In this method valid - invalid bit is used to distinguish between

those pages that are in memory and those pages that are in disk.

valid - page in the memory.

 Invalid - not legal or page is currently on the

disk.

� PAGE FAULT:

o Access to a page that has invalid bit causes page fault.

� STEPS IN HANDLING PAGE FAULT:

1. We check an internal table for this process to determine whether

the reference was a valid or invalid memory access.

2. If the reference was invalid ,we terminate the process .If it was

valid but,we have not yet brought in the page,we now bring it.

3. we find a free frame.

4. we schedule a disk operation to read the desired page into the

newly allocated frame.

5. when the disk read is complete,we modify the internal table kept

with the process and the page table to indicate that the page is

now in memory .

6. we restart the instruction that was interrupt by the illegal

address trap.The process can now access that page as though it

had always been in memory.

� It is important to save the state when page fault occurs so

that we can restart the process from the same place.

� PURE DEMAND PAGING :

o A pure can also be executed with no pages in memory.This

scheme is called pure demand paging.

� HARDWARE SUPPORT:

o The hardware to support demand paging is given below:

1. PAGE TABLE;

• this table has valid - invalid bit.

2. SECONDARY MEMORY:

• Holds pages that are not in main memory.

• It is known as swap device.

• The section of disk used for demand paging is

called as swap space or baking store.

� PERFORMANCE OF DEMAND PAGING:

o Performance of a system depends on the demand paging.

o Effective access time ==(1-p)* ma + P X page fault time .

p-probaility of page fault.

ma-memory access time.

o It is important to keep page fault rate low otherwise.

o Effective access time increase and slows process execution.

PAGE REPLACEMENT:

 While a user process is executing ,a page fault occurs.The

hardware traps to the operating system,which checks its internal tables to

see that is a page fault and not an illegal memory access .The operating

system determines where the desired page is residing on the disk ,but

then finds there are no free frames on the free - frames list ;all memory

is in use.At this case page replacement is done.

PAGE REPLACEMENT INCLUDING THE FOLLOWING

STEPS:

1.Find the location of the desired page on the disk.

2.Find a free frame.

� If there is a free frame ,use it.

� otherwise ,use a page -replacement algorithm to select a

victim frame.

� write the victim page to the disk,change the page and

frame tables accordingly.

3.Read the desired page into the (newly)free frame; change the

page and frame tables.

4.Restart the user process.Here two page transfer are needed

which increase the effective access time , to overcome this modify

bit is used.

� Each page or frame may have a modify bit associated with it in

the hardware.The modify bit for a page is set when the pages

modified.

� When we select a page for replacement ,we examine it's modify

bit.If the bit is set, we know that the page has been modified

and so we must write that page to disk .

� If the modify bit is not set , however,the page has not been

modified and so we can avoid writing page to the disk because

it is already there.

� Page replacement is basic to demand paging.

� We must solve two major problem to implement demand paging

we must develop a frame allocation algorithm and a page

replacement algorithm.

PAGE REPLACEMENT ALGORITHMS

 There are many page replacement algorithms.Generally the page

replacement algorithm with lowest fault rate is selected.

FIFO ALGORITHM

o In FIFO replacement algorithm the oldest page is chosen and

replaced.

o Let us apply FIFO algorithm to the following reference string

with frame 3,7,0,1,2,0,3,0,4,2,3,0,3,2,1,2.

� ADVANTAGE:

 FIFO is one of the simplest method .It is easy to understand .

� Drawback:

o The drawback of FIFO algorithm is belady'sanomaly .

o For some page replacement algorithm ,the page fault rate may

increase as the number of allocated frames increases.This is

called as belady's anomaly.(1,2,3,4,1,2,5,1,2,3,4,5)9 page fault

-- 3 frames ,10 page fault --4 frames)

OPTIMAL ALGORITHM

o An optimal algorithm replace the page that will not be used

for longest period of time.

o For example the optimal algorithm is applied to the following

reference string with frame 3 as follows;

� ADVANTAGE:

o An optimal algorithm has the lowest page fault rate of all

algorithms.

o This algorithm never suffer from belady's anomaly.

DRAWBACK ;

The drawback of optimal algorithm is it is difficult to implement

because it requires future knowledge of the reference string.

 LRU ALGORITHM

 LRU algorithm replace the page that has not been used for longest

period of time .It is called as least recently used (LRU)Algorithm.

For example the LRU algorithm is applied to the following reference

string with frame 3 as follows:

Advantage:

 LRU algorithm is to be quite good.

DRAWBACK:

 The major problem with LRU method is implementation .LRU

method can be implemented in two ways;

• COUNTERS:

(a) One way to implementation LRU is to be use counter. In

this a time of use field is attached with each page table

entry and a clock is added with CPU.The clock is

incremented for every memory reference and value is

copied to the time of use field .

b. The page with less time value is replaced

• STACK :

 Another way to implement LRU is to keep a stack

of page numbers.whenever a page is referenced ,it is removed from

the stack and put on the top .In this way the top of the stack is always

the most recently used page and bottom is the LRU page.

LRU Approximation Algorithms

Some algorithm may be implemented using reference bit.

1.ADDITIONAL REFERENCE BIT ALGORITHM.

 In this method each page entry contains the shift register ,which

is shifted to the right in equal period of time.

 Each time when the pages is reference ,high bit of register is set

to 1

 The page withe smallest number in the register is the victim.

2.SECOND CHANCE ALGORITHM:

This method select page using FIFO and check the reference bit.

 If 0-choose page as the victim and if 1-choose from the reset of

pages .Reference bit should be reset periodically.

3.ENHANCED SECOND CHANCE ALGORITHM:

In this both reference bit and modified bit is considered to select a

victim page.

(0,0)- victim page

(0,1)-not recently used but modified,do not replace.

(1,0)-recently used but clean,probably will be used again.

(1,1)-recently used and modified,do not replace.

 COUNTING ALGORITHM

LFU algorithm and MFU algorithm comes under counting algorithm

and is implemented using counters.

1) LFU ALGORITHM

This method select the least frequently used page as a victim.

2) MFU ALGORITHM

 This method select the most frequently used page as a victim.

PAGE BUFFERING ALGORITHM:

Keep pool of free frames.when victim frame is chosen , place victim

frame to the pool without writing it to the disk.pool a free frame out

of the pool and read demanded page to this frame .Keep the list of

modified frames.write the modified frame to the disk sometime when

device is idle,update the list and modified bit.

