
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - V

1

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Syllabus

UNIT-V

Graph Traversals – Connected Components – Spanning Trees –

Biconnected components – Branch and Bound: General Methods

(FIFO & LC) – 0/1 Knapsack problems – Introduction to NP-Hard

and NP-Completeness.

Text Book:

Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms C++, Second Edition, Universities Press,

2007. (For Units II to V)

2

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Graph Traversals

• The graph is a non-linear data structure. It consists of some nodes and their

connected edges. The edges may be directed or undirected.

• A Graph G is a pair (V, E), where V is a finite set of elements called vertices

or nodes and E is a set of pairs of elements of V called edges or arcs.

• A graph in which every edge is directed is called directed graph or

digraph.

• A graph in which edges are undirected are called undirected graph.

• A graph which contains parallel edges is called multi-graph.

• A graph which does not contain parallel edges are called simple graph.

• Graph traversal is the problem of visiting all the nodes in a graph in a

particular manner, updating and/or checking their values along the way.

• The graph has two types of traversal algorithms.

 Depth First Search or Traversal

 Breadth First Search or Traversal

3

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Depth First Search (DFS)

4

DFS follows the following rules:

1. Select an unvisited node s, visit it, and treat it as the current node.

2. Find an unvisited neighbor of the current node, visit it, and make it

the current new node.

3. If the current node has no unvisited neighbors, backtrack to its parent

and make that the new current node.

 Repeat the steps 2 and 3 until no more nodes can be visited.

4. If there are still unvisited nodes, repeat from step 1.

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Depth First Search (DFS)

5

DFS(v)

{

 visited[v] = 1;

 for each vertex w adjacent from v do

 {

 if (visited[w] = 0) then DFS(w);

 }

}

1, 2, 4, 8, 5, 6, 3, 7

Dr. R. Bhuvaneswari
Periyar Govt. Arts College

Cuddalore

Breadth First Search (BFS)

6

• The Breadth First Search (BFS) traversal is an algorithm, which is used

to visit all of the nodes of a given graph.

• In this traversal algorithm one node is selected and then all of the

adjacent nodes are visited one by one.

• After completing all of the adjacent vertices, it moves further to check

another vertices and checks its adjacent vertices again.

• This method can be implemented using a queue.

• A Boolean array is used to ensure that a vertex is visited only once.

 Add the starting vertex to the queue.

 Repeat the following until the queue is empty.

 Remove the vertex at the front of the queue, call it v.

 Visit v.

 Add the vertices adjust to v to the queue, that were never

visited.

Dr. R. Bhuvaneswari

BFS(v)
// q is a queue of unexplored vertices
{
 u = v;
 visited[v] = 1;
 repeat
 {
 for all vertices w adjacent from u do
 {
 if(visited[w] = 0) then
 {
 add w to q;
 visited[w] = 1;
 }
 }
 if q is empty then return;
 delete u from q;
 } until(false);
}

Breadth First Search (BFS)

7

Periyar Govt. Arts College

Cuddalore

BFT(G, n)

{

 for i = 1 to n do

 visited[i] = 0;

 for i = 1 to n do

 if(visited[i] = 0) then BFS(i)

}

1, 2, 3, 4, 5, 6, 7, 8

Dr. R. Bhuvaneswari

Connected Components

8

Periyar Govt. Arts College

Cuddalore

• A connected component of an undirected graph is a subgraph in which

each pair of nodes is connected with each other via a path.

• The connected components of an undirected graph G = (V, E) are the

maximal disjoint sets C1, C2, ..., Ck such that V = C1  C2  ...  Ck ,

and u, v  Ci if and only if u is reachable from v and v is reachable from u.

• The connected components of a graph can be found by performing a

depth-first traversal on the graph.

The above is a connected

graph

Connected Component 1:

{a,b,c,d,e}

Connected Component 2:

{f}

The above graph is not
connected and has 2 connected
components

Dr. R. Bhuvaneswari

Spanning Tree

9

Periyar Govt. Arts College

Cuddalore

• In a tree there is always exactly one path from each vertex in the graph to

any other vertex in the graph.

• A spanning tree for a graph is a subgraph that includes every vertex of the

original, and is a tree.

• A spanning tree that has minimum total weight is called a minimum

spanning tree for the graph.

(a) Graph G (b) Breadth-first

spanning tree of G

rooted at b

(c) Depth-first

spanning tree of

G rooted at c

Dr. R. Bhuvaneswari

Biconnected components and DFS

10

Periyar Govt. Arts College

Cuddalore

• A graph is said to be Biconnected if:

1. It is connected, i.e. it is possible to reach every vertex from every other

vertex, by a simple path.

2. Even after removing any vertex the graph remains connected.

• The given graph is clearly connected. Removing any of the vertices does

not increase the number of connected components. So the given graph is

Biconnected.

Dr. R. Bhuvaneswari

Biconnected components and DFS

11

Periyar Govt. Arts College

Cuddalore

Consider the following graph if the vertex 2 is removed,

• Similarly, if vertex 3 is removed there will be no path left to reach vertex 0

from any of the vertices 1, 2, 4 or 5.

• Removing vertex 4 will disconnect 1 from all other vertices 0, 2, 3 and 4.

So the graph is not Biconnected.

• A graph is Biconnected if it has no vertex such that its removal increases

the number of connected components in the graph.

Dr. R. Bhuvaneswari

Biconnected components and DFS

12

Periyar Govt. Arts College

Cuddalore

• A vertex whose removal increases the number of connected components is

called an Articulation Point.

• A vertex v in a connected graph G is an articulation point if and only if the

deletion of vertex v together with all edges incident to v disconnects the

graph into two or more nonempty components.

• A graph G is biconnected if and only if it contains no articulation points.

 1, 4, 3, 5, 6, 2

1 2 3 4 5 6

d 1 6 3 2 4 5

L 1 1 1 1 3 3

Dr. R. Bhuvaneswari

Biconnected components and DFS

13

Periyar Govt. Arts College

Cuddalore

• Let (u, v) be a set of vertices, where u is the parent of v.

• If L[v]  d[u] then u is an articulation point, except root.

• The root of an DFS tree is an articulation point if and only if it has 2

children.

Example:

(4, 3)

L[3]  d[4] = 1  2 is not true

(3, 5)

L[5]  d[3] = 3  3 is true

3 is an articulation point

Dr. R. Bhuvaneswari

Algorithm Art(u, v)

//u is a start vertex. V is its parent if any in DFS spanning tree. dfn is

//initialized to zero and num is initialized to 1.

{

 dfn[u] = num; L[u] = num; num = num+1;

 for each vertex w adjacent from u do

 {

 if (dfn[w] = 0) then

 {

 Art(w,u)

 L[u] = min(L[u],L[w]);

 }

 else if (wv) then

 L[u] = min(L[u], dfn[w]);

 }

}

Biconnected components and DFS

14

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Biconnected components and DFS

15

Periyar Govt. Arts College

Cuddalore

Construction of biconnected graph:

• Check the given graph if it is biconnected or not.

• If the given graph is not biconnected, then identify the articulation points.

• If articulation point exists, determine the set of edges whose inclusion

makes the graph connected.

• Two biconnected components can have atmost one vertex in common and

that vertex is an articulation point.

Given graph G

Biconnected components of G

Dr. R. Bhuvaneswari

 if(L[w]  dfn[u]) then

 {

 write(“New bicomponent”);

 repeat

 {

 delete an edge from the top of stack s;

 let this edge be (x, y);

 write(x, y);

 }until (((x, y) = (u, w)) or

 ((x, y) = (w, u)));

 }

 }

 else if (w  v) then

 L[u] = min(L[u], dfn[w]);

 }

}

Biconnected components and DFS

16

Periyar Govt. Arts College

Cuddalore

Algorithm Bicomp(u, v)

//u is a start vertex for DFS. v is its

//parent if any in the depth first

//spanning tree. It is assumed that the

//global array dfn is initially 0. num1.

{

 dfn[u] = num; L[u] = num;

 num = num+1;

 for each vertex w adjacent from u do

 {

 if((v  w) and (dfn[w] < dfn[u])) then

 add(u, w) to the top of a stack s;

 if(dfn[w] = 0) then

 {

 Bicomp(w, u);

 L[u] = min(L[u], L[w]);

Dr. R. Bhuvaneswari

Branch and Bound

17

Periyar Govt. Arts College

Cuddalore

• Branch and Bound refers to state space search methods in which all

children of the E-Node are generated before any other live node becomes

the E-Node.

• Branch and Bound is the generalization of both graph search strategies,

BFS and D-search.

 A BFS like state space search is called as FIFO (First in first out)

search, as the list of live nodes are first in first out list (queue).

 A D-search like state space search is called as LIFO (last in first out)

search, as the list of live nodes are last in first out list (stack).

• Live node is a node that has been generated but whose children have not

yet been generated.

• E-node is a live node whose children are currently being explored. In other

words, an E-node is a node currently being expanded.

• Dead node is a generated node that is not to be expanded or explored any

further. All children of a dead node have already been expanded.

Dr. R. Bhuvaneswari

Branch and Bound

18

Periyar Govt. Arts College

Cuddalore

Three types of search strategies in branch and bound:

 FIFO (First In First Out) search

 LIFO (Last In First Out) search

 LC (Least Cost) search

FIFO (First In First Out) Branch and Bound

• In FIFO search queue data structure is used.

• Initially node 1 is taken as the E-node.

• The child nodes of node 1 are generated. All these live nodes are placed

in a queue.

• Next the first element in the queue is deleted, i.e. node 2, the child nodes

of node 2 are generated and placed in the queue.

• This continues until the answer node is found.

Dr. R. Bhuvaneswari

Branch and Bound

19

Periyar Govt. Arts College

Cuddalore

Example:

Job sequencing with deadlines problem

Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3};

d = {1, 2, 1, 2}

Node 1 is the E-node. Child nodes of node 1

are generated and placed in the queue.

First element in the queue is deleted, ie., 2 is
deleted and its child nodes are generated.

Similarly the next element is deleted, ie., 3

and its child nodes are generated and placed

in the queue.

This is continued until an answer node is

reached.

2 3 4 5

3 4 5 6 7 8

State space tree

Dr. R. Bhuvaneswari

Branch and Bound

20

Periyar Govt. Arts College

Cuddalore

LIFO (Last In First Out) Branch and Bound

• In LIFO search stack data structure is used.

• Initially node 1 is taken as the E-node.

• The child nodes of node 1 are generated. All these live nodes are placed

in a stack.

• Next the first element in the stack is deleted, i.e. node 5, the child nodes

of node 5 are generated and placed in the stack.

• This continues until the answer node is found.

Example:

Job sequencing with deadlines problem

Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2}

Node 1 is the E-node. Child nodes of node 1 are generated and placed in

the stack.

Dr. R. Bhuvaneswari

Branch and Bound

21

Periyar Govt. Arts College

Cuddalore

First element in the stack is deleted, ie., 5 is

deleted and its child nodes are generated.

Similarly the next element is deleted, ie., 4

and its child nodes are generated and placed

in the stack.

This is continued until an answer node is

reached.

5

4

3

2

4

3

2

6

3

2

State space tree

Dr. R. Bhuvaneswari

Branch and Bound

22

Periyar Govt. Arts College

Cuddalore

Least Cost Branch and Bound

• In both FIFO and LIFO Branch and Bound the selection rules for the next

E-node in rigid and blind.

• The selection rule for the next E-node does not give any preferences to a

node that has a very good chance of getting the search to an answer node

quickly.

• In this method ranking function or cost function is used.

• The child nodes of the E-node are generated, among these live nodes; a

node which has minimum cost is selected. By using ranking function the

cost of each node is calculated.

Example:

Job sequencing with deadlines problem

Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2}

Dr. R. Bhuvaneswari

Branch and Bound

23

Periyar Govt. Arts College

Cuddalore

Initially we will take node 1 as E-node. Generate children of node 1, the

children are 2, 3, 4, 5. By using ranking function we will calculate the cost

of 2, 3, 4, 5 nodes is ĉ =25, ĉ =12, ĉ =14, ĉ =30 respectively.

Now we will select a node which has minimum cost i.e., node 3. For node

3, the children are 6, 7.

State space tree

Dr. R. Bhuvaneswari

Branch and Bound

24

Periyar Govt. Arts College

Cuddalore

Control Abstraction for LC-Search

• Let t be a state space tree and c() a cost function for the nodes in t.

• If x is a node in t, then c(x) is the minimum cost of any answer node in

the sub tree with root x. Thus, c(t) is the cost of a minimum-cost answer

node in t.

• LC search uses ĉ to find an answer node.

• The algorithm uses two functions

 Least-cost()

 Add_node()

• Least-cost() finds a live node with least c(). This node is deleted from the

list of live nodes and returned.

• Add_node() to delete and add a live node from or to the list of live nodes.

• Add_node(x)adds the new live node x to the list of live nodes.

Dr. R. Bhuvaneswari

Branch and Bound

25

Periyar Govt. Arts College

Cuddalore

Algorithm LCSearch(t)
{
 if *t is an answer node then output *t and return;
 E = t;
 initialize the list of live nodes to be empty;
 repeat
 {
 for each child x of E do
 {
 if x is an answer node then output the path from x to t and return;
 Add(x);
 (xparent) = E;
 }
 if there are no more live nodes then
 {
 write(“No answer node”); return;
 }
 E= Least();
 }until(false);
}

Dr. R. Bhuvaneswari

Branch and Bound

26

Periyar Govt. Arts College

Cuddalore

Bounding

• A branch and bound method searches a state space tree using any search

mechanism in which all the children of the E-node are generated before

another node becomes the E-node.

• A good bounding helps to prune (reduce) efficiently the tree, leading to a

faster exploration of the solution space. Each time a new answer node is

found, the value of upper can be updated.

• Branch and bound algorithms are used for optimization problem where we

deal directly only with minimization problems. A maximization problem is

easily converted to a minimization problem by changing the sign of the

objective function.

• A cost function ĉ(x) is estimated to give the lower bound of the cost of a

node x, c(x), such that ĉ(x)  c(x) and cost function upper is derived such

that if c(x)  ĉ(x) > upper then such nodes are killed or bounded.

• The initial value of upper is estimated by a heuristic search or set to .

Every time a live node is generated the value of upper is also updated.

Dr. R. Bhuvaneswari

0/1 Knapsack problem

27

Periyar Govt. Arts College

Cuddalore

• n objects are given and capacity of knapsack is m.

• Select some objects to fill the knapsack in such a way that it should not exceed

the capacity of knapsack and maximum profit can be earned. The knapsack

problem is maximization problem. It means we will always seek for maximum

pixi (where pi represents profit of object xi).

• Since the branch bound deals only the minimization problems the objective

function would be negated and changed to minimize Σpixi subject to Σwixi  m.

• This modified knapsack problem is stated as,

• The two functions ĉ(x) and U(x) are defined using two algorithms Bound and

UBound .

minimize − pi

1 ≤ i ≤ n

xi

subject to wixi ≤ m

1≤ i ≤ n

xi = 0 or 1, 1 ≤ i ≤ n

Dr. R. Bhuvaneswari

0/1 Knapsack problem

28

Periyar Govt. Arts College

Cuddalore

• UBound computes the weights of the list of objects placed in the knapsack as

a whole and their sum  m, and the profit is correspondingly decremented

from initial profit and returned.

• Bound is similar to UBound but it considers fractional objects to use the entire

capacity of the sack Σwixi = m.

Algorithm Ubound(cp, cw, k, m)
{
 b = cp; c = cw;
 for i = k+1 to n do
 {
 if(c+w[i]  m) then
 {
 c = c+w[i]; b = b – p[i];
 }
 }
 return b;
}

Algorithm Bound(cp, cw, k)
{
 b = cp; c = cw;
 for i = k+1 to n do
 {
 c = c+w[i];
 if(c < m) then b = p[i];
 else return b - (1 - (c - m) / w[i])*p[i];
 }
 return b;
}

Dr. R. Bhuvaneswari

0/1 Knapsack problem

29

Periyar Govt. Arts College

Cuddalore

n = 4; m = 15;

(p1, p2, p3, p4) = {10, 10, 12, 18}; (w1, w2, w3, w4) = {2, 4, 6, 9}

x1 = 1,

x2 = 1,

x3 = 0,

x4 = 1

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

30

Periyar Govt. Arts College

Cuddalore

• P, NP, NP-Hard and NP-Complete are classes that any problem would fall

under or would be classified as.

P (Polynomial) problems

• P problems refer to problems where an algorithm would take a polynomial

amount of time to solve.

• If an algorithm is polynomial, we can formally define its time complexity

as:

 T(n) = O(C * nk) where C > 0 and k > 0 where C and k are constants

and is input size.

• In general, for polynomial-time algorithms k is expected to be less than n.

• Many algorithms complete in polynomial time:

 Linear Search (n)

 Binary Search (logn)

 Insertion Sort (n2)

 Merge Sort (nlogn)

 Matrix Multiplication (n3)

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

31

Periyar Govt. Arts College

Cuddalore

NP (Non-deterministic Polynomial) Problems

• NP class problems don’t have a polynomial run-time to solve, but have a

polynomial run-time to verify solutions.

• These algorithms have an exponential complexity, which we’ll define as:

 T(n) = O(C1*knC2) where C1 > 0, C2 > 0 and k > 0 where C1, C2, k are

constants and n is the input size.

• There are several algorithms that fit this description.

 0/1 knapsack problem (2n)

 Traveling salesperson problem

 Sum of Subsets problem

 Graph coloring problem

 Hamiltonian cycles problem

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

32

Periyar Govt. Arts College

Cuddalore

Non deterministic Algorithms

When the result of every operation is uniquely defined then it is called

deterministic algorithm.

When the outcome is not uniquely defined but is limited to a specific set of

possibilities, we call it non deterministic algorithm.

New statements to specify such algorithms.

 choice(S): arbitrarily choose one of the elements of set S

 failure: signals an unsuccessful completion

 success: signals a successful completion

The assignment X:= choice(1:n) could result in X being assigned any value

from the integer range[1..n]. There is no rule specifying how this value is

chosen.

The nondeterministic algorithms terminates unsuccessfully if and only if

there is no set of choices which leads to the successful signal.

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

33

Periyar Govt. Arts College

Cuddalore

Example:

Searching an element x in a given set of elements A(1:n). We are required to

determine an index j such that a(j) = x or j = 0 if x is not present.

Algorithm NSearch(A, n, key)

{

 j = choice();

 if(key = a[j]) then

 {

 write(j); Success();

 }

 write(0);

 Failure();

}

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

34

Periyar Govt. Arts College

Cuddalore

• Any problem for which the answer is either zero or one (yes or no) is

called a decision problem. An algorithm for a decision problem is termed

a decision algorithm.

• Any problem that involves the identification of an optimal (either

minimum or maximum) value of a given cost function is known as an

optimization problem. An optimization algorithm is used to solve an

optimization problem

• Many problems will have decision and optimization versions.

Eg. Traveling salesperson problem.

 optimization: find Hamiltonian cycle of minimum weight

 decision: is there a Hamiltonian cycle of weight  k

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

35

Periyar Govt. Arts College

Cuddalore

Definition:

 P is a set of all decision problems solvable by a deterministic algorithm

in polynomial time.

 NP is the set of all decision problems solvable by a nondeterministic

algorithm in polynomial time.

P  NP

Definition. Let L1 and L2 be problems. L1 reduces to L2(L1 L2) if and only if

there is a way to solve L1 by deterministic polynomial time algorithm that

solve L2 in polynomial time.

Dr. R. Bhuvaneswari

Introduction to NP-Hard and NP-Complete

36

Periyar Govt. Arts College

Cuddalore

• A problem is NP-hard if all problems in NP are polynomial time reducible

to it.

• A problem is NP-complete if the problem is both

– NP-hard, and

– NP

• All NP-Complete problems are NP-Hard, but not all NP-Hard problems are

NP-Complete.

• NP-Complete problems are subclass of NP-Hard.

