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Graph Traversals 

• The graph is a non-linear data structure. It consists of some nodes and their 

connected edges. The edges may be directed or undirected.  

• A Graph G is a pair (V, E), where V is a finite set of elements called vertices 

or nodes and E is a set of pairs of elements of V called edges or arcs. 

• A graph in which every edge is directed is called directed graph or 

digraph.  

• A graph in which edges are undirected are called undirected graph. 

• A graph which contains parallel edges is called multi-graph.  

• A graph which does not contain parallel edges are called simple graph.  

• Graph traversal is the problem of visiting all the nodes in a graph in a 

particular manner, updating and/or checking their values along the way.  

• The graph has two types of traversal algorithms. 

 Depth First Search or Traversal 

 Breadth First Search or Traversal 
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Depth First Search (DFS) 
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DFS follows the following rules: 

1. Select an unvisited node s, visit it, and treat it as the current node. 

2. Find an unvisited neighbor of the current node, visit it, and make it 

the current new node. 

3. If the current node has no unvisited neighbors, backtrack to its parent 

and make that the new current node. 

 Repeat the steps 2 and 3 until no more nodes can be visited.  

4. If there are still unvisited nodes, repeat from step 1.  
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Depth First Search (DFS) 
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DFS(v) 

{ 

    visited[v] = 1; 

    for each vertex w adjacent from v do 

    { 

         if (visited[w] = 0) then DFS(w); 

    } 

} 

1, 2, 4, 8, 5, 6, 3, 7 
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Breadth First Search (BFS) 
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• The Breadth First Search (BFS) traversal is an algorithm, which is used 

to visit all of the nodes of a given graph.  

• In this traversal algorithm one node is selected and then all of the 

adjacent nodes are visited one by one.  

• After completing all of the adjacent vertices, it moves further to check 

another vertices and checks its adjacent vertices again. 

• This method can be implemented using a queue. 

• A Boolean array is used to ensure that a vertex is visited only once. 

 Add the starting vertex to the queue. 

 Repeat the following until the queue is empty. 

 Remove the vertex at the front of the queue, call it v. 

 Visit v. 

 Add the vertices adjust to v to the queue, that were never 

visited. 
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BFS(v) 
// q is a queue of unexplored vertices 
{ 
    u = v;   
    visited[v] = 1; 
    repeat 
    { 
        for all vertices w adjacent from u do 
       { 
           if(visited[w] = 0) then 
          { 
 add w to q; 
 visited[w] = 1; 
          } 
       } 
       if q is empty then return; 
       delete u from q; 
    } until(false); 
} 

Breadth First Search (BFS) 
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BFT(G, n) 

{ 

    for i = 1 to n do 

        visited[i] = 0; 

    for i = 1 to n do 

       if(visited[i] = 0) then BFS(i) 

} 

1, 2, 3, 4, 5, 6, 7, 8 
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Connected Components 
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• A connected component of an undirected graph is a subgraph in which 

each pair of nodes is connected with each other via a path. 

• The connected components of an undirected graph G = (V, E) are the 

maximal disjoint sets C1, C2, ..., Ck such that V = C1  C2  ...  Ck , 

and u, v  Ci if and only if u is reachable from v and v is reachable from u.  

• The connected components of a graph can be found by performing a 

depth-first traversal on the graph.  

The above is a connected 

graph 

Connected Component 1: 

{a,b,c,d,e} 

Connected Component 2: 

{f} 

The above graph is not 
connected and has 2 connected 
components 
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Spanning Tree 

9 

Periyar Govt. Arts College 

Cuddalore 

• In a tree there is always exactly one path from each vertex in the graph to 

any other vertex in the graph. 

• A spanning tree for a graph is a subgraph that includes every vertex of the 

original, and is a tree. 

• A spanning tree that has minimum total weight is called a minimum 

spanning tree for the graph.  

(a) Graph G (b) Breadth-first 

spanning tree of G 

rooted at b 

(c) Depth-first 

spanning tree of 

G rooted at c 
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Biconnected components and DFS 
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• A graph is said to be Biconnected if: 

1. It is connected, i.e. it is possible to reach every vertex from every other 

vertex, by a simple path. 

2. Even after removing any vertex the graph remains connected. 

 

 

 

 

 

 

 

 

• The given graph is clearly connected. Removing any of the vertices does 

not increase the number of connected components. So the given graph is 

Biconnected. 
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Biconnected components and DFS 
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Consider the following graph                       if the vertex 2 is removed, 

 

 

 

 

 

 

 

 

• Similarly, if vertex 3 is removed there will be no path left to reach vertex 0 

from any of the vertices 1, 2, 4 or 5.  

• Removing vertex 4 will disconnect 1 from all other vertices 0, 2, 3 and 4. 

So the graph is not Biconnected. 

• A graph is Biconnected if it has no vertex such that its removal increases 

the number of connected components in the graph. 
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Biconnected components and DFS 
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• A vertex whose removal increases the number of connected components is 

called an Articulation Point. 

• A vertex v in a connected graph G is an articulation point if and only if the 

deletion of vertex v together with all edges incident to v disconnects the 

graph into two or more nonempty components. 

• A graph G is biconnected if and only if it contains no articulation points. 

 

 

 

 

 

 

 

 
 

        1, 4, 3, 5, 6, 2 

1 2 3 4 5 6 

d 1 6 3 2 4 5 

L 1 1 1 1 3 3 
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Biconnected components and DFS 
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• Let (u, v) be a set of vertices, where u is the parent of v.  

• If L[v]  d[u] then u is an articulation point, except root. 

• The root of an DFS tree is an articulation point if and only if it has 2 

children. 

Example: 

(4, 3) 

L[3]  d[4] = 1  2 is not true 

(3, 5) 

L[5]  d[3] = 3  3 is true 

3 is an articulation point 
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Algorithm Art(u, v) 

//u is a start vertex. V is its parent if any in DFS spanning tree. dfn is 

//initialized to zero and num is initialized to 1. 

{ 

   dfn[u] = num; L[u] = num; num = num+1; 

   for each vertex w adjacent from u do 

  { 

     if (dfn[w] = 0) then 

    { 

       Art(w,u) 

       L[u] = min(L[u],L[w]); 

    } 

    else if (wv) then 

          L[u] = min(L[u], dfn[w]); 

  } 

} 

Biconnected components and DFS 
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Biconnected components and DFS 
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Construction of biconnected graph: 

• Check the given graph if it is biconnected or not. 

• If the given graph is not biconnected, then identify the articulation points. 

• If articulation point exists, determine the set of edges whose inclusion 

makes the graph connected. 

• Two biconnected components can have atmost one vertex in common and 

that vertex is an articulation point. 

Given graph G 

Biconnected components of G 
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   if(L[w]  dfn[u]) then 

  { 

    write(“New bicomponent”); 

    repeat 

   { 

    delete an edge from the top of stack s; 

    let this edge be (x, y); 

    write(x, y); 

   }until (((x, y) = (u, w)) or  

                                ((x, y) = (w, u))); 

  } 

 } 

 else if (w  v) then 

        L[u] = min(L[u], dfn[w]); 

 } 

} 

Biconnected components and DFS 
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Algorithm Bicomp(u, v) 

//u is a start vertex for DFS. v is its 

//parent if any in the depth first 

//spanning tree. It is assumed that the  

//global array dfn is initially 0. num1. 

{ 

  dfn[u] = num; L[u] = num;  

  num = num+1; 

  for each vertex w adjacent from u do 

 { 

   if((v  w) and (dfn[w] < dfn[u])) then 

       add(u, w) to the top of a stack s; 

   if(dfn[w] = 0) then 

  { 

     Bicomp(w, u); 

     L[u] = min(L[u], L[w]); 
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Branch and Bound 
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• Branch and Bound refers to state space search methods in which all 

children of the E-Node are generated before any other live node becomes 

the E-Node.  

• Branch and Bound is the generalization of both graph search strategies, 

BFS and D-search.  

 A BFS like state space search is called as FIFO (First in first out) 

search, as the list of live nodes are first in first out list (queue).  

 A D-search like state space search is called as LIFO (last in first out) 

search, as the list of live nodes are last in first out list (stack).  

• Live node is a node that has been generated but whose children have not 

yet been generated.  

• E-node is a live node whose children are currently being explored. In other 

words, an E-node is a node currently being expanded.  

• Dead node is a generated node that is not to be expanded or explored any 

further. All children of a dead node have already been expanded.  
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Branch and Bound 
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Three types of search strategies in branch and bound:  

 FIFO (First In First Out) search 

 LIFO (Last In First Out) search 

 LC (Least Cost) search 

FIFO (First In First Out) Branch and Bound 

• In FIFO search queue data structure is used. 

• Initially node 1 is taken as the E-node.  

• The child nodes of node 1 are generated. All these live nodes are placed 

in a queue. 

• Next the first element in the queue is deleted, i.e. node 2, the child nodes 

of node 2 are generated and placed in the queue. 

• This continues until the answer node is found. 
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Branch and Bound 
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Example: 

Job sequencing with deadlines problem 

Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3};  

d = {1, 2, 1, 2} 

Node 1 is the E-node. Child nodes of node 1 

are generated and placed in the queue. 

 

 

First element in the queue is deleted, ie., 2 is 
deleted and its child nodes are generated. 

 

 

Similarly the next element is deleted, ie., 3 

and its child nodes are generated and placed 

in the queue. 

This is continued until an answer node is 

reached. 

2 3 4 5 

3 4 5 6 7 8 

State space tree 
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Branch and Bound 
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LIFO (Last In First Out) Branch and Bound 

• In LIFO search stack data structure is used. 

• Initially node 1 is taken as the E-node.  

• The child nodes of node 1 are generated. All these live nodes are placed 

in a stack. 

• Next the first element in the stack is deleted, i.e. node 5, the child nodes 

of node 5 are generated and placed in the stack. 

• This continues until the answer node is found. 

Example: 

Job sequencing with deadlines problem 

Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2} 

Node 1 is the E-node. Child nodes of node 1 are generated and placed in 

the stack. 
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Branch and Bound 
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First element in the stack is deleted, ie., 5 is 

deleted and its child nodes are generated. 

Similarly the next element is deleted, ie., 4 

and its child nodes are generated and placed 

in the stack. 

This is continued until an answer node is 

reached. 

5 

4 

3 

2 

4 

3 

2 

6 

3 

2 

State space tree 
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Branch and Bound 
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Least Cost Branch and Bound 

• In both FIFO and LIFO Branch and Bound the selection rules for the next 

E-node in rigid and blind.  

• The selection rule for the next E-node does not give any preferences to a 

node that has a very good chance of getting the search to an answer node 

quickly.  

• In this method ranking function or cost function is used.  

• The child nodes of the E-node are generated, among these live nodes;  a 

node which has minimum cost is selected. By using ranking function the 

cost of each node is calculated. 

Example: 

Job sequencing with deadlines problem 

Jobs = {J1, J2, J3, J4}; P = {10, 5, 8, 3}; d = {1, 2, 1, 2} 
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Branch and Bound 
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Initially we will take node 1 as E-node. Generate children of node 1, the 

children are 2, 3, 4, 5. By using ranking function we will calculate the cost 

of 2, 3, 4, 5 nodes is ĉ =25, ĉ =12, ĉ =14, ĉ =30 respectively. 

Now we will select a node which has minimum cost i.e., node 3. For node 

3, the children are 6, 7. 

State space tree 
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Branch and Bound 
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Control Abstraction for LC-Search 

• Let t be a state space tree and c() a cost function for the nodes in t.  

• If x is a node in t, then c(x) is the minimum cost of any answer node in 

the sub tree with root x. Thus, c(t) is the cost of a minimum-cost answer 

node in t.  

• LC search uses ĉ to find an answer node.  

• The algorithm uses two functions  

 Least-cost()  

 Add_node() 

• Least-cost() finds a live node with least c(). This node is deleted from the 

list of live nodes and returned.  

• Add_node() to delete and add a live node from or to the list of live nodes.  

• Add_node(x)adds the new live node x to the list of live nodes.  
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Branch and Bound 
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Algorithm LCSearch(t) 
{ 
  if *t is an answer node then output *t and return; 
  E = t; 
  initialize the list of live nodes to be empty; 
  repeat 
  { 
     for each child x of E do 
    { 
       if x is an answer node then output the path from x to t and return; 
       Add(x); 
       (xparent) = E; 
    } 
    if there are no more live nodes then 
    { 
       write(“No answer node”); return; 
    } 
    E= Least(); 
  }until(false); 
} 
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Branch and Bound 
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Bounding 

• A branch and bound method searches a state space tree using any search 

mechanism in which all the children of the E-node are generated before 

another node becomes the E-node.  

• A good bounding helps to prune (reduce) efficiently the tree, leading to a 

faster exploration of the solution space. Each time a new answer node is 

found, the value of upper can be updated.  

• Branch and bound algorithms are used for optimization problem where we 

deal directly only with minimization problems. A maximization problem is 

easily converted to a minimization problem by changing the sign of the 

objective function.  

• A cost function ĉ(x) is estimated to give the lower bound of the cost of a 

node x, c(x), such that ĉ(x)  c(x) and cost function upper is derived such 

that if c(x)  ĉ(x) > upper then such nodes are killed or bounded. 

• The initial value of upper is estimated by a heuristic search or set to . 

Every time a live node is generated the value of upper is also updated. 
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0/1 Knapsack problem 
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• n objects are given and capacity of knapsack is m.  

• Select some objects to fill the knapsack in such a way that it should not exceed 

the capacity of knapsack and maximum profit can be earned. The knapsack 

problem is maximization problem. It means we will always seek for maximum 

pixi (where pi represents profit of object xi).  

• Since the branch bound deals only the minimization problems the objective 

function would be negated and changed to minimize Σpixi subject to Σwixi  m.  

• This modified knapsack problem is stated as, 

 

 

 

 

 

• The two functions ĉ(x) and U(x) are defined using two algorithms Bound and 

UBound . 

minimize −  pi

1 ≤ i ≤ n

xi     

subject to  wixi  ≤ m  

1≤ i ≤ n

  

xi = 0 or 1, 1 ≤ i ≤ n  
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0/1 Knapsack problem 
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• UBound computes the weights of the list of objects placed in the knapsack as 

a whole and their sum  m, and the profit is correspondingly decremented 

from initial profit and returned.  

• Bound is similar to UBound but it considers fractional objects to use the entire 

capacity of the sack Σwixi = m. 

Algorithm Ubound(cp, cw, k, m) 
{ 
  b = cp; c = cw; 
  for i = k+1 to n do 
 { 
    if(c+w[i]  m) then 
   { 
      c = c+w[i]; b = b – p[i]; 
   } 
 } 
 return b; 
} 

Algorithm Bound(cp, cw, k) 
{ 
  b = cp; c = cw; 
  for i = k+1 to n do 
 { 
    c = c+w[i];  
    if(c < m) then b = p[i]; 
    else return b - (1 - (c - m) / w[i])*p[i]; 
 } 
 return b; 
} 
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0/1 Knapsack problem 
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n = 4; m = 15;  

(p1, p2, p3, p4) = {10, 10, 12, 18}; (w1, w2, w3, w4) = {2, 4, 6, 9} 

 

x1 = 1,  

x2 = 1,  

x3 = 0,  

x4 = 1 
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Introduction to NP-Hard and NP-Complete 
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• P, NP, NP-Hard and NP-Complete are classes that any problem would fall 

under or would be classified as. 

P (Polynomial) problems 

• P problems refer to problems where an algorithm would take a polynomial 

amount of time to solve. 

• If an algorithm is polynomial, we can formally define its time complexity 

as: 

 T(n) = O(C * nk) where C > 0 and k > 0 where C and k are constants 

and  is input size.  

• In general, for polynomial-time algorithms k is expected to be less than n. 

• Many algorithms complete in polynomial time: 

 Linear Search (n) 

 Binary Search (logn) 

 Insertion Sort (n2) 

 Merge Sort (nlogn) 

 Matrix Multiplication (n3)  
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Introduction to NP-Hard and NP-Complete 
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NP (Non-deterministic Polynomial) Problems 

• NP class problems don’t have a polynomial run-time to solve, but have a 

polynomial run-time to verify solutions. 

• These algorithms have an exponential complexity, which we’ll define as:  

 T(n) = O(C1*knC2) where C1 > 0, C2 > 0 and k > 0 where C1, C2, k are 

constants and n is the input size. 

• There are several algorithms that fit this description. 

 0/1 knapsack problem (2n) 

 Traveling salesperson problem 

 Sum of Subsets problem 

 Graph coloring problem 

 Hamiltonian cycles problem 
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Introduction to NP-Hard and NP-Complete 
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Non deterministic Algorithms 

When the result of every operation is uniquely defined then it is called 

deterministic algorithm.  

When the outcome is not uniquely defined but is limited to a specific set of 

possibilities, we call it non deterministic algorithm.  

New statements to specify such algorithms.  

 choice(S): arbitrarily choose one of the elements of set S  

 failure: signals an unsuccessful completion  

 success: signals a successful completion  

The assignment X:= choice(1:n) could result in X being assigned any value 

from the integer range[1..n]. There is no rule specifying how this value is 

chosen.  

The nondeterministic algorithms terminates unsuccessfully if and only if 

there is no set of choices which leads to the successful signal.  
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Introduction to NP-Hard and NP-Complete 
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Example:  

Searching an element x in a given set of elements A(1:n). We are required to 

determine an index j such that a(j) = x or j = 0 if x is not present. 

Algorithm NSearch(A, n, key) 

{ 

   j = choice(); 

   if(key = a[j]) then 

  { 

       write(j); Success(); 

  } 

  write(0); 

  Failure(); 

}  
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Introduction to NP-Hard and NP-Complete 
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• Any problem for which the answer is either zero or one (yes or no) is 

called a decision problem. An algorithm for a decision problem is termed 

a decision algorithm. 

• Any problem that involves the identification of an optimal (either 

minimum or maximum) value of a given cost function is known as an 

optimization problem. An optimization algorithm is used to solve an 

optimization problem 

• Many problems will have decision and optimization versions.                  

Eg. Traveling salesperson problem. 

 optimization: find Hamiltonian cycle of minimum weight  

 decision: is there a Hamiltonian cycle of weight  k 
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Introduction to NP-Hard and NP-Complete 
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Definition: 

 P is a set of all decision problems solvable by a deterministic algorithm 

in polynomial time.  

 NP is the set of all decision problems solvable by a nondeterministic 

algorithm in polynomial time.  

P  NP 

Definition. Let L1 and L2 be problems. L1 reduces to L2(L1 L2) if and only if 

there is a way to solve L1 by deterministic polynomial time algorithm that 

solve L2 in polynomial time. 
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Introduction to NP-Hard and NP-Complete 
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• A problem is NP-hard if all problems in NP are polynomial time reducible 

to it. 

• A problem is NP-complete if the problem is both  

– NP-hard, and  

– NP 

• All NP-Complete problems are NP-Hard, but not all NP-Hard problems are 

NP-Complete. 

• NP-Complete problems are subclass of NP-Hard. 


