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Divide and Conquer 

General Method: 

• Given a function to compute on ‘n’ inputs, divide-and-conquer 

strategy suggests splitting the inputs into ‘k’ distinct subsets, 

1<k≤n, yielding ‘k’ subproblems. 

• These subproblems must be solved, and then a method must be 

found to combine sub solutions into a solution of the whole. 

• If the subproblems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied. 

• For those cases the re-application of the divide-and-conquer 

principle is naturally expressed by a recursive algorithm. 
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Divide and Conquer 
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Divide and Conquer 

Control Abstraction of Divide and Conquer 

Algorithm DAndC(P) 

{ 

if small(P) then 

     return S(P); 

else 

{ 

    divide P into smaller instance P1, P2…….., Pk, k≥1; 

    apply DAndC to each of these subproblems; 

    return combine(DAndC(P1), DAndC(P2), ……., DAndC(Pk)); 

} 

} 
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Divide and Conquer 

Computing time of DAndC is: 

 

 

 

 

where  

T(n) is the time for DAndC on any input of size n 

g(n) is the time to compute the answer directly for small inputs 

f(n) is the time for dividing P and combining the solutions to 

subproblems 

6 

Periyar Govt. Arts College 

Cuddalore 

T n =  
g n                                                                           n small

T n1 +  T n2 + … . +T nk +  f n          otherwise
  



Dr. R. Bhuvaneswari 

Binary Search 

• Let ai be a list of elements that are in non-decreasing order. 1≤i ≤n. 

• It is a problem of determining whether a given element x is present 

in the list. 

mid = (low+high)/2                     x = 60 

1. low = 1, high = 10 

     mid = (1+10)/2 = 5,  60 > 50, low = 6 

2. low = 6, high = 10 

     mid = (6 + 10)/2 = 8, 60 < 80, high = 7 

3. low = 6, high = 7 

     mid = (6 + 7)/2 = 6 

10 20 30 40 50 60 70 80 90 100 

   1          2         3         4         5          6          7         8         9         10 

1.(x<a[mid] ) then  

      high = mid-1 

2.else if (x>a[mid]) then  

      low = mid+1 

3.else return mid; 
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Binary Search 

Algorithm BinSearch(a,n,x) 

//Given an array a[1:n] of elements in 

//nondecreasing order, n ≥ 0 

{ 

 low = 1; high = n; 

 while (low ≤ high) do 

 { 

      mid := (low+high)/2; 

      if (x < a[mid]) then high = mid-1; 

      else if (x > a[mid]) then low := mid+1; 

     else return mid; 

 } 

 return 0; 

} 

10 20 30 40 50 60 70 80 90 100 

mid = (low+high)/2                     x = 30 

1. low = 1, high = 10 

     mid = (1+10)/2 = 5,  30 < 50, high = 4 

2. low = 1, high = 4 

     mid = (1 + 4)/2 = 2, 30 > 20, low = 3 

3. low = 3, high = 4 

     mid = (3 + 4)/2 = 3 

   1          2         3         4         5          6          7         8         9         10 

8 

Periyar Govt. Arts College 

Cuddalore 



Dr. R. Bhuvaneswari 

Binary Search using recursion 

Algorithm BinSrch(a,i,l,x) 

{ 

if (l = i) then 

{ 

   if (x = a[i]) then return i; 

   else return 0; 

} 

else 

{ 

   mid = (i+l)/2; 

   if (x = a[mid]) then return mid; 

   else if (x < a[mid]) then return BinSrch(a,i,mid-1,x); 

          else return BinSrch(a,mid+1,l,x); 

} 

} 

10 20 30 40 50 60 70 80 90 100 

   1        2        3         4         5         6        7        8         9       10 

mid = (i+l)/2                     x = 30 

1. i = 1, l = 10 

     mid = (1+10)/2 = 5,  30 < 50, l = 4 

2. i = 1, l = 4 

     mid = (1 + 4)/2 = 2, 30 > 20, i = 3 

3. i = 3, l = 4 

     mid = (3 + 4)/2 = 3 

9 

Periyar Govt. Arts College 

Cuddalore 



Dr. R. Bhuvaneswari 

Binary Search 
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Time Complexity 

1. If the search element is the middle element of the array, in this case, 

time complexity will be O(1), the best case.  

2. Otherwise, binary search algorithm breaks the array into half in each 

iteration. 

The array is divided by 2 until the array has only one element: 

   

 

we can rewrite it as: 

  n = 2k 

by taking log both side, we get 

  log2
n = log22

k 

  log2
n = klog2

2  

  k = log2
n (since loga

a = 1) 

The time complexity of binary search is log2
n 
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Finding the maximum and minimum 

• The problem to find the maximum and 

minimum items in a set of n elements. 

Algorithm StraightMaxMin(a,n,max,min) 

// set max to maximim and min to the 

// minimum of a[1:n] 

{ 

    max := min := a[1]; 

    for i := 2 to n do 

    { 

 if (a[i] > max) then max := a[i]; 

 if (a[i] < min) then min := a[i]; 

    } 

} 

• StraightMaxMin requires 2(n-1) element 

comparisons in the best, average and worst 

cases. 
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37 78 45 12 92 

  1          2        3        4        5 

max = min = 37 

i = 2 

max = 78; min = 37 

i = 3 

max = 78; min = 37 

i = 4 

max = 78; min =12 

i = 5 

max = 92; min = 12 
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Finding the maximum and minimum 

• An immediate improvement is possible by realizing that the 

comparison a[i] < min is necessary only when a[i] > max is false. 

Hence we can replace the contents of the for loop by 

 if (a[i] > max) then max := a[i]; 

 else if (a[i] < min) then min := a[i]; 

• When the elements are in the increasing order the number of 

element comparisons is n-1. 

• When the elements are in the decreasing order the number of 

element comparisons is 2(n-1). 
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Finding the maximum and minimum 

Divide and Conquer Algorithm 

• Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the 

problem. 

• Here ‘n’ is the no. of elements in the list (a[i],….,a[j]) and we are 

interested in finding the maximum and minimum of the list. 

• If the list has more than 2 elements, P has to be divided into smaller 

instances. 

• We divide ‘P’ into the 2 instances,  

P1=([n/2], a[1],……..a[n/2]) and 

P2= (n-[n/2], a[[n/2]+1],….., a[n])  

• After having divided ‘P’ into 2 smaller sub problems, we can solve 

them by recursively invoking the same divide-and-conquer algorithm. 

• max(P) is the maximum of max(P1) and max(P2) 

• min(P) is the minimum of min(P1) and min(P2) 
13 
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Finding the maximum and minimum 
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Algorithm MaxMin(i,j,max,min) 

//a[1:n] is a global array. 

{ 

if (i = j) then max = min = a[i]; 

else if (i = j-1) then 

{ 

   if (a[i] < a[j]) then 

  { 

      max = a[j]; min = a[i]; 

   } 

   else 

  { 

      max = a[i]; min = a[j]; 

   } 

 } 

 else 

{ 

     mid = (i+j)/2; 

     MaxMin(i,mid,max,min); 

     MaxMin(mid+1,j,max1,min1); 

     if(max < max1) then max = max1; 

     if (min > min1) then min = min1; 

   } 

} 
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Finding the maximum and minimum 
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1, 9, 60,-8 

1, 5, 22, -8 6, 9, 60, 17 

1, 3, 22, -5 4, 5, 15, -8 6, 7, 60, 17 8, 9, 47, 31 

1, 2, 22, 13 3, 3, -5,-5 

mid = (1+9)/2  

       = 5 

mid = (1+5)/2  

       = 3 

mid = (1+3)/2  

        = 2 

mid = (6+9)/2  

       = 7 

Example: find max and min in the array:  

  22, 13, -5, -8, 15, 60, 17, 31, 47 ( n = 9 ) 

    

Index: 1          2         3          4          5          6          7          8          9 

Array: 22       13       -5        -8         15        60        17        31         47 
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Finding the maximum and minimum 
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The number of element comparisons T(n) is represented as recurrence 

relation 

 

 

 

 

When n is a power of two, n = 2k for some positive integer k, then                  

     T(n) = 2T(n/2)+2 

= 2(2T(n/4)+2)+2 

= 4T(n/4) + 4 + 2 

= 4(2T(n/8) + 2) +4 + 2 

= 8T(n/8) + 8 + 4 + 2 

    ……. 

= 2kT(n/2k) + 2k + 2k-1 + 2k-2 + …… + 2 
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𝑇 𝑛 =   
𝑇  

𝑛

2
 +  𝑇  

𝑛

𝑛
 +  2                      𝑛 > 2

1                                                          𝑛 = 2
0                                                         𝑛 = 1
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Finding the maximum and minimum 

17 

 Taking T(2) = 1 

ie. 
𝑛

2𝑘
= 2 

T(n) = 2k + 2k + 2k-1 + 2k-2 + ……. + 2 

         = 2k +  2𝑗𝑘
𝑗=1  

         = 2k + 2 ∗ 
(2𝑘−1)

2−1
 

         = 
𝑛

2
+  2 ∗ (

𝑛

2
−  1) 

         = 
𝑛

2
+ 𝑛 − 2 

         = 
3𝑛

2
− 2 

Therefore, 3n/2- 2 is the best, average and worst case number of comparisons where 

n is power of 2. 

𝑆𝑖𝑛𝑐𝑒, 𝑥𝑗
𝑛

𝑗=1

= 𝑥 ∗
𝑥𝑛 − 1

𝑥 − 1
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Merge Sort 
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 Sort a sequence of n elements into non-decreasing order. 

 Merge sort is a sorting technique based on divide and conquer 

technique. 

 Merge sort first divides the unsorted list into two equal halves. 

 Sort each of the two sub lists recursively until we have list size 

of length 1, in which case the list itself is returned. 

 Merge the two sorted sub lists back into one sorted list. 
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Merge Sort 
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Merge Sort 

20 

 

Algorithm MergeSort(low,high) 

{ 

  If (low < high) then 

 {  

    mid = (low+high)/2; 

    MergeSort(low,mid); 

    MergeSort(mid+1,high); 

    Merge(low,mid,high); 

  } 

} 

1, 7 

1, 4 

1, 2 

1, 1 2, 2 

mid = 4 

mid = 2 

mid = 1 

38 27 43 3 9 82 10 
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Algorithm Merge(low,mid,high) 

//b[] is an auxiliary global array. 

{ 

  h=low; i=low; j=mid+1; 

  while((h≤mid) and (j≤high)) do 

  { 

     if(a[h] ≤ a[j]) then 

    { 

        b[i] = a[h]; h = h+1; 

    } 

    else 

    { 

        b[i] = a[j]; j = j+1; 

    } 

    i = i+1; 

  } 

  if(h > mid) then 

  { 

     for k = j to high do 

     { 

         b[i] = a[k]; i = i+1; 

     } 

  } 

  else 

  { 

     for k = h to mid do 

    { 

        b[i] = a[k]; i = i+1; 

     } 

  } 

  for k = low to high do 

         a[k] = b[k]; 

} 

Merge Sort 

21 
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Merge Sort 

22 

  

  

𝑇 𝑛 =   
𝑎                                       𝑛 = 1, 𝑎 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2𝑇  
𝑛

2
 +  𝑐𝑛                   𝑛 > 1, 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

  

Computing time for merge sort is described by the recurrence relation, 

 

 

 

when n = 2k 

 T(n)  = 2T(n/2) + cn 

  = 2[2T(n/4) + cn/2] + cn 

  = 4T(n/4) + cn + cn 

  = 4T(n/4) + 2cn 

  = 4[2T(n/8) + cn/4] + 2cn 

  = 8T(n/8) + cn + 2cn 

  = 8T(n/8) + 3cn 

      …………. 

  = 2kT(n/2k) + kcn 

  = 2kT(1) + kcn 

  = an + cnlogn 

Since,  

T(n/2k = 1) 

n = 2k 

log2
n = log22

k 

         = klog2
2 

         = k 
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Quick Sort 
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• In merge sort, the array a[1:n] was divided at its midpoint into 

sub arrays which were independently sorted and later merged. 

• In quick sort, the division into 2 sub arrays is made so that the 

sorted sub arrays do not need to be merged later. 

• This is accomplished by rearranging the elements in a[1:n] such 

that a[i] ≤ a[j] for all i between 1 and m and all j between (m+1) 

and n for some m, 1 ≤ m ≤ n. 

• Thus the elements in a[1:m] and a[m+1:n] can be independently 

sorted. 

• No merging is needed.  

• This rearranging is referred to as partitioning.  
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Quick Sort 
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• Quick sort picks an element as pivot element and partitions the 

given array around the  picked pivot.  

• There are many different versions of quick sort that pick pivot in 

different ways. 

 pick first element as pivot. 

 pick last element as pivot.  

 Pick a random element as pivot. 

 Pick median as pivot. 

• The role of the pivot value is to assist with splitting the list.  

• The actual position where the pivot value belongs in the final 

sorted list, commonly called the split point, will be used to divide 

the list for subsequent calls to the quick sort. 
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Quick Sort Example 
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Algorithm Quicksort(p,q) 

{ 

if (p<q) then 

  { 

     j:= Partititon (a,p,q+1); 

     Quicksort(p,j-1); 

     Quicksort(j+1,q); 

  } 

} 

 

Algorithm Partition(a,m,p) 

{ 

  v:=a[m]; i:=m; j:=p; 

  repeat 

 { 

    repeat 

         i:=i+1; 

    until (a[i] ≥ v); 

    repeat 

         j := j-1; 

    until (a[j] ≤ v); 

    if (i < j) then Interchange(a, i, j); 

  }until ( i ≥j); 

  a[m] := a[j]; 

  a[j] := v; 

  return j; 

} 

 

Algorithm Interchange(a, i, j) 

{ 

   p := a[i]; 

   a[i] := a[j]; 

   a[j] := p; 

} 

Quick Sort 

26 
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Quick Sort 
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Computing time for Quick sort   

 T(n)  = 2T(n/2) + n for n > 1,   T(1) = 0 

 

 T(n)  = 2T(n/2) + n 

  = 2[2T(n/4) + n/2] + n 

  = 4T(n/4) + n + n 

  = 4T(n/4) + 2n 

  = 4[2T(n/8) + n/4] + 2n 

  = 8T(n/8) + n + 2n 

  = 8T(n/8) + 3n 

      …………. 

  = 2kT(n/2k) + kn 

  = nT(1) + kn 

  = nlogn 

Since,  

T(n/2k = 1) 

n = 2k 

log2
n = log22

k 

         = klog2
2 

         = k 
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Selection Sort 
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• Selection sort is the most simplest sorting algorithm. 

• Following are the steps involved in selection sort(for sorting a 

given array in ascending order): 

 Starting from the first element, search the smallest element in 

the array, and replace it with the element in the first position. 

 Then move on to the second position, and look for smallest 

element present in the subarray, starting from index 2 till the 

last index. 

 Replace the element at the second position in the original 

array with the second smallest element. 

 This is repeated, until the array is completely sorted. 
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Selection Sort Example 
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Periyar Govt. Arts College 

Cuddalore 



Dr. R. Bhuvaneswari 

Selection Sort 
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Algorithm Selection(a, n) 

{ 

   for i := 1 to n-1 do 

  { 

     min := a[i]; 

     loc := i; 

     for j := i+1 to n do 

     { 

         if (min > a[j] ) then 

        { 

 min := a[j]; 

 loc :=j; 

         } 

     } 

     temp := a[i]; a[i] := a[loc]; a[loc] := temp; 

  }  

} 
Periyar Govt. Arts College 
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Selection Sort 
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Number of comparisons in selection sort: 

 (n-1) + (n-2) + (n-3) +……. + 2 + 1 

 n(n-1)/2 comparisons  
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Greedy  Method 
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General Method: 

• In the method, problems have n inputs and requires to obtain a 

subset that satisfies some constraints. 

• Any subset that satisfies these constraints is called feasible 

solution. 

• A feasible solution should either maximizes or minimizes a given 

objective function is called an optimal solution. 

• The greedy technique in which selection of input leads to optimal 

solution is called subset paradigm. 

• If the selection does not lead to optimal subset, then the decisions 

are made by considering the inputs in some order. This type of 

greedy method is called ordering paradigm. 
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Greedy  Method 
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Control Abstraction of Greedy Method 

Algorithm Greedy(a,n) 

// a[1:n] contains n inputs 

{ 

  solution := 0; 

  for i :=1 to n do 

 { 

    x := select(a); 

    if feasible(solution, x) then 

 solution := Union(solution,x); 

  } 

  return solution; 

} 
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Container Loading 
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• Large ship to be loaded with cargo. 

• All containers are of the same size but may be of different weights. 

• Container i has weight wi. 

• The capacity of the ship is C. 

• Load the ship with maximum number of containers without exceeding 

the cargo weight capacity. 

• Find values xi  {0, 1} such that  

 

 

• And the optimum function           is maximized. 

• Every set of xi’s that satisfy the constraints is a feasible solution. 

• Every feasible solution that maximizes           is an optimal solution.  
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 wixi  ≤ C                1 ≤ i ≤ n

n

i=1

 

 xi

n

i=1

 

 xi

n

i=1
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Container Loading 
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• Ship may be loaded in stages. 

• Greedy criterion: From the remaining containers, select the one with 

least weight. 

Example: 

n = 8 

[w1, w2, w3, w4, w5, w6, w7, w8] = [100, 200, 50, 90, 150, 50, 20, 80] 

C = 400 

[x1, x2, x3, x4, x5, x6, x7, x8] = [1, 0, 1, 1, 0, 1, 1, 1] 
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Container Loading 
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Algorithm ContainerLoading(c, capacity, numberofContainers, x) 

// set x[i] = 1 if and only if container c[i], i ≥ 1 is loaded. 

{ 

// sort into increasing order of weights. 

  Sort(C, numberofContainers); 

  n = numberofContainers; 

  for i = 1 to n do 

    x[i] = 0; 

  i = 1; 

  while ((i  n) && (c[i].weight  capacity)) 

  { 

      x[c[i].id] = 1; 

      capacity = capacity – c[i].weight; 

      i++; 

  } 

} 
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Knapsack Problem 
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• Given a set of items, each with a weight and a profit, determine the 

number of each item to include in a collection so that the total weight is 

less than or equal to a given limit and the total profit is as large as 

possible. 

• Items are divisible; you can take any fraction of an item. 

• And it is solved using greedy method. 
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Knapsack Problem 
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• Given n objects and a knapsack or bag. 

• wi → weight of object i. 

• m → knapsack capacity. 

• If a fraction xi, 0 ≤ xi ≤ 1 of object i is placed into the knapsack, then a 

profit of pixi is earned. 

• Objective is to fill the knapsack that maximizes the total profit earned. 

• Problem can be stated as 

 

 

 

 

 

 

• A feasible solution is any set (x1 …. xn) satisfying equations ② and  

• An optimal solution is a feasible solution for which equation ① is 

maximized. 
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maximize  pi

1 ≤ i ≤n

xi       − − − − −① 

subject to  wixi  ≤ m − − − − −② 

1≤ i ≤n

  

0 ≤ xi ≤ 1, 1 ≤ i ≤ n    − − − − −③ 
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Knapsack Problem 
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Example: n = 3, m = 20 

 

 

 

 (x1, x2, x3)  Σwixi  Σpixi 

1. (1/2, 1/3, 1/4)  16.5 24.25 

2. (1, 2/15, 0) 20 28.2 

3. (0, 2/3, 1) 20 31 

4. (0, 1, 1/2)   20 31.5 

5. (2/3, 8/15, 0) 20 29.5 

6. (5/6, 1/3, 0) 20 28.8  

Among all the feasible solutions       yields the maximum profit 
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④ 

Weight wi 18 15 10 

Profits pi 25 24 15 
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Knapsack Problem 
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The greedy algorithm:  

Step 1: Sort pi/wi into nonincreasing order.  

Step 2: Put the objects into the knapsack according to the sorted 
sequence as possible as we can.  

e. g. 

n = 3, M = 20 

(w1, w2, w3) = (18, 15, 10)  

(p1, p2, p3) = (25, 24, 15)  

Sol:  p1/w1 = 25/18 = 1.39  

  p2/w2 = 24/15 = 1.6  

  p3/w3 = 15/10 = 1.5  

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2  
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Weight wi 15 10 18 

Profits pi 24 15 25 
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Knapsack Problem 
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Algorithm GreedyKnapsack(m, n) 

//n objects are ordered such that p[i]/w[i] ≥ p[i+1]/w[i+1]. 

{ 

   for i:= 1 to n do x[i] := 0.0; 

   U := m; 

   for i := 1 to n do 

   { 

       if (w[i] > U) then break; 

       x[i] :=1.0; 

       U := U-w[i]; 

   } 

   if (i ≤ n) then  

       x[i] = U/w[i]; 

} 

x[i] = 0.0        m = 20, n = 3 

x[2] = 0.0 

x[3] = 0.0 

U = 20 

i = 1 

x[1] = 1; U = 5 

i = 2, 10 > 5 

x[2] = 5/10 = 1/2 

x[1] = 1, x[2] = 1/2, x[3] = 0 


