
Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Design and Analysis of

Algorithms

Dr. R. Bhuvaneswari
Assistant Professor

Department of Computer Science
Periyar Govt. Arts College, Cuddalore.

Unit - II

1

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Divide and Conquer

Syllabus

UNIT-II

Divide and Conquer: General Method – Binary Search – Finding

Maximum and Minimum – Merge Sort – Greedy Algorithms:

General Method – Container Loading – Knapsack Problem.

Text Book:

Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,

Computer Algorithms C++, Second Edition, Universities Press,

2007. (For Units II to V)

2

Dr. R. Bhuvaneswari

Periyar Govt. Arts College

Cuddalore

Divide and Conquer

General Method:

• Given a function to compute on ‘n’ inputs, divide-and-conquer

strategy suggests splitting the inputs into ‘k’ distinct subsets,

1<k≤n, yielding ‘k’ subproblems.

• These subproblems must be solved, and then a method must be

found to combine sub solutions into a solution of the whole.

• If the subproblems are still relatively large, then the divide-and-

conquer strategy can possibly be reapplied.

• For those cases the re-application of the divide-and-conquer

principle is naturally expressed by a recursive algorithm.

3

Dr. R. Bhuvaneswari

Divide and Conquer

4

subproblem 2

of size n/2

subproblem 1

of size n/2

a solution to

subproblem 1

a solution to

the original problem

a solution to

subproblem 2

a problem of size n
(instance)

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Divide and Conquer

Control Abstraction of Divide and Conquer

Algorithm DAndC(P)

{

if small(P) then

 return S(P);

else

{

 divide P into smaller instance P1, P2…….., Pk, k≥1;

 apply DAndC to each of these subproblems;

 return combine(DAndC(P1), DAndC(P2), ……., DAndC(Pk));

}

}

5

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Divide and Conquer

Computing time of DAndC is:

where

T(n) is the time for DAndC on any input of size n

g(n) is the time to compute the answer directly for small inputs

f(n) is the time for dividing P and combining the solutions to

subproblems

6

Periyar Govt. Arts College

Cuddalore

T n =
g n n small

T n1 + T n2 + … . +T nk + f n otherwise

Dr. R. Bhuvaneswari

Binary Search

• Let ai be a list of elements that are in non-decreasing order. 1≤i ≤n.

• It is a problem of determining whether a given element x is present

in the list.

mid = (low+high)/2 x = 60

1. low = 1, high = 10

 mid = (1+10)/2 = 5, 60 > 50, low = 6

2. low = 6, high = 10

 mid = (6 + 10)/2 = 8, 60 < 80, high = 7

3. low = 6, high = 7

 mid = (6 + 7)/2 = 6

10 20 30 40 50 60 70 80 90 100

 1 2 3 4 5 6 7 8 9 10

1.(x<a[mid]) then

 high = mid-1

2.else if (x>a[mid]) then

 low = mid+1

3.else return mid;

7

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Binary Search

Algorithm BinSearch(a,n,x)

//Given an array a[1:n] of elements in

//nondecreasing order, n ≥ 0

{

 low = 1; high = n;

 while (low ≤ high) do

 {

 mid := (low+high)/2;

 if (x < a[mid]) then high = mid-1;

 else if (x > a[mid]) then low := mid+1;

 else return mid;

 }

 return 0;

}

10 20 30 40 50 60 70 80 90 100

mid = (low+high)/2 x = 30

1. low = 1, high = 10

 mid = (1+10)/2 = 5, 30 < 50, high = 4

2. low = 1, high = 4

 mid = (1 + 4)/2 = 2, 30 > 20, low = 3

3. low = 3, high = 4

 mid = (3 + 4)/2 = 3

 1 2 3 4 5 6 7 8 9 10

8

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Binary Search using recursion

Algorithm BinSrch(a,i,l,x)

{

if (l = i) then

{

 if (x = a[i]) then return i;

 else return 0;

}

else

{

 mid = (i+l)/2;

 if (x = a[mid]) then return mid;

 else if (x < a[mid]) then return BinSrch(a,i,mid-1,x);

 else return BinSrch(a,mid+1,l,x);

}

}

10 20 30 40 50 60 70 80 90 100

 1 2 3 4 5 6 7 8 9 10

mid = (i+l)/2 x = 30

1. i = 1, l = 10

 mid = (1+10)/2 = 5, 30 < 50, l = 4

2. i = 1, l = 4

 mid = (1 + 4)/2 = 2, 30 > 20, i = 3

3. i = 3, l = 4

 mid = (3 + 4)/2 = 3

9

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Binary Search

10

Time Complexity

1. If the search element is the middle element of the array, in this case,

time complexity will be O(1), the best case.

2. Otherwise, binary search algorithm breaks the array into half in each

iteration.

The array is divided by 2 until the array has only one element:

we can rewrite it as:

 n = 2k

by taking log both side, we get

 log2
n = log22

k

 log2
n = klog2

2

 k = log2
n (since loga

a = 1)

The time complexity of binary search is log2
n

 Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Finding the maximum and minimum

• The problem to find the maximum and

minimum items in a set of n elements.

Algorithm StraightMaxMin(a,n,max,min)

// set max to maximim and min to the

// minimum of a[1:n]

{

 max := min := a[1];

 for i := 2 to n do

 {

 if (a[i] > max) then max := a[i];

 if (a[i] < min) then min := a[i];

 }

}

• StraightMaxMin requires 2(n-1) element

comparisons in the best, average and worst

cases.
11

37 78 45 12 92

 1 2 3 4 5

max = min = 37

i = 2

max = 78; min = 37

i = 3

max = 78; min = 37

i = 4

max = 78; min =12

i = 5

max = 92; min = 12

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Finding the maximum and minimum

• An immediate improvement is possible by realizing that the

comparison a[i] < min is necessary only when a[i] > max is false.

Hence we can replace the contents of the for loop by

 if (a[i] > max) then max := a[i];

 else if (a[i] < min) then min := a[i];

• When the elements are in the increasing order the number of

element comparisons is n-1.

• When the elements are in the decreasing order the number of

element comparisons is 2(n-1).

12

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Finding the maximum and minimum

Divide and Conquer Algorithm

• Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the

problem.

• Here ‘n’ is the no. of elements in the list (a[i],….,a[j]) and we are

interested in finding the maximum and minimum of the list.

• If the list has more than 2 elements, P has to be divided into smaller

instances.

• We divide ‘P’ into the 2 instances,

P1=([n/2], a[1],……..a[n/2]) and

P2= (n-[n/2], a[[n/2]+1],….., a[n])

• After having divided ‘P’ into 2 smaller sub problems, we can solve

them by recursively invoking the same divide-and-conquer algorithm.

• max(P) is the maximum of max(P1) and max(P2)

• min(P) is the minimum of min(P1) and min(P2)
13

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Finding the maximum and minimum

14

Periyar Govt. Arts College

Cuddalore

Algorithm MaxMin(i,j,max,min)

//a[1:n] is a global array.

{

if (i = j) then max = min = a[i];

else if (i = j-1) then

{

 if (a[i] < a[j]) then

 {

 max = a[j]; min = a[i];

 }

 else

 {

 max = a[i]; min = a[j];

 }

 }

 else

{

 mid = (i+j)/2;

 MaxMin(i,mid,max,min);

 MaxMin(mid+1,j,max1,min1);

 if(max < max1) then max = max1;

 if (min > min1) then min = min1;

 }

}

Dr. R. Bhuvaneswari

Finding the maximum and minimum

15

1, 9, 60,-8

1, 5, 22, -8 6, 9, 60, 17

1, 3, 22, -5 4, 5, 15, -8 6, 7, 60, 17 8, 9, 47, 31

1, 2, 22, 13 3, 3, -5,-5

mid = (1+9)/2

 = 5

mid = (1+5)/2

 = 3

mid = (1+3)/2

 = 2

mid = (6+9)/2

 = 7

Example: find max and min in the array:

 22, 13, -5, -8, 15, 60, 17, 31, 47 (n = 9)

Index: 1 2 3 4 5 6 7 8 9

Array: 22 13 -5 -8 15 60 17 31 47

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Finding the maximum and minimum

16

The number of element comparisons T(n) is represented as recurrence

relation

When n is a power of two, n = 2k for some positive integer k, then

 T(n) = 2T(n/2)+2

= 2(2T(n/4)+2)+2

= 4T(n/4) + 4 + 2

= 4(2T(n/8) + 2) +4 + 2

= 8T(n/8) + 8 + 4 + 2

 …….

= 2kT(n/2k) + 2k + 2k-1 + 2k-2 + …… + 2

Periyar Govt. Arts College

Cuddalore

𝑇 𝑛 =
𝑇

𝑛

2
 + 𝑇

𝑛

𝑛
 + 2 𝑛 > 2

1 𝑛 = 2
0 𝑛 = 1

Dr. R. Bhuvaneswari

Finding the maximum and minimum

17

 Taking T(2) = 1

ie.
𝑛

2𝑘
= 2

T(n) = 2k + 2k + 2k-1 + 2k-2 + ……. + 2

 = 2k + 2𝑗𝑘
𝑗=1

 = 2k + 2 ∗
(2𝑘−1)

2−1

 =
𝑛

2
+ 2 ∗ (

𝑛

2
− 1)

 =
𝑛

2
+ 𝑛 − 2

 =
3𝑛

2
− 2

Therefore, 3n/2- 2 is the best, average and worst case number of comparisons where

n is power of 2.

𝑆𝑖𝑛𝑐𝑒, 𝑥𝑗
𝑛

𝑗=1

= 𝑥 ∗
𝑥𝑛 − 1

𝑥 − 1

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Merge Sort

18

 Sort a sequence of n elements into non-decreasing order.

 Merge sort is a sorting technique based on divide and conquer

technique.

 Merge sort first divides the unsorted list into two equal halves.

 Sort each of the two sub lists recursively until we have list size

of length 1, in which case the list itself is returned.

 Merge the two sorted sub lists back into one sorted list.

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Merge Sort

19

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Merge Sort

20

Algorithm MergeSort(low,high)

{

 If (low < high) then

 {

 mid = (low+high)/2;

 MergeSort(low,mid);

 MergeSort(mid+1,high);

 Merge(low,mid,high);

 }

}

1, 7

1, 4

1, 2

1, 1 2, 2

mid = 4

mid = 2

mid = 1

38 27 43 3 9 82 10

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm Merge(low,mid,high)

//b[] is an auxiliary global array.

{

 h=low; i=low; j=mid+1;

 while((h≤mid) and (j≤high)) do

 {

 if(a[h] ≤ a[j]) then

 {

 b[i] = a[h]; h = h+1;

 }

 else

 {

 b[i] = a[j]; j = j+1;

 }

 i = i+1;

 }

 if(h > mid) then

 {

 for k = j to high do

 {

 b[i] = a[k]; i = i+1;

 }

 }

 else

 {

 for k = h to mid do

 {

 b[i] = a[k]; i = i+1;

 }

 }

 for k = low to high do

 a[k] = b[k];

}

Merge Sort

21

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Merge Sort

22

𝑇 𝑛 =
𝑎 𝑛 = 1, 𝑎 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

2𝑇
𝑛

2
 + 𝑐𝑛 𝑛 > 1, 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Computing time for merge sort is described by the recurrence relation,

when n = 2k

 T(n) = 2T(n/2) + cn

 = 2[2T(n/4) + cn/2] + cn

 = 4T(n/4) + cn + cn

 = 4T(n/4) + 2cn

 = 4[2T(n/8) + cn/4] + 2cn

 = 8T(n/8) + cn + 2cn

 = 8T(n/8) + 3cn

 ………….

 = 2kT(n/2k) + kcn

 = 2kT(1) + kcn

 = an + cnlogn

Since,

T(n/2k = 1)

n = 2k

log2
n = log22

k

 = klog2
2

 = k

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Quick Sort

23

• In merge sort, the array a[1:n] was divided at its midpoint into

sub arrays which were independently sorted and later merged.

• In quick sort, the division into 2 sub arrays is made so that the

sorted sub arrays do not need to be merged later.

• This is accomplished by rearranging the elements in a[1:n] such

that a[i] ≤ a[j] for all i between 1 and m and all j between (m+1)

and n for some m, 1 ≤ m ≤ n.

• Thus the elements in a[1:m] and a[m+1:n] can be independently

sorted.

• No merging is needed.

• This rearranging is referred to as partitioning.

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Quick Sort

24

• Quick sort picks an element as pivot element and partitions the

given array around the picked pivot.

• There are many different versions of quick sort that pick pivot in

different ways.

 pick first element as pivot.

 pick last element as pivot.

 Pick a random element as pivot.

 Pick median as pivot.

• The role of the pivot value is to assist with splitting the list.

• The actual position where the pivot value belongs in the final

sorted list, commonly called the split point, will be used to divide

the list for subsequent calls to the quick sort.

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Quick Sort Example

25

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Algorithm Quicksort(p,q)

{

if (p<q) then

 {

 j:= Partititon (a,p,q+1);

 Quicksort(p,j-1);

 Quicksort(j+1,q);

 }

}

Algorithm Partition(a,m,p)

{

 v:=a[m]; i:=m; j:=p;

 repeat

 {

 repeat

 i:=i+1;

 until (a[i] ≥ v);

 repeat

 j := j-1;

 until (a[j] ≤ v);

 if (i < j) then Interchange(a, i, j);

 }until (i ≥j);

 a[m] := a[j];

 a[j] := v;

 return j;

}

Algorithm Interchange(a, i, j)

{

 p := a[i];

 a[i] := a[j];

 a[j] := p;

}

Quick Sort

26

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Quick Sort

27

Computing time for Quick sort

 T(n) = 2T(n/2) + n for n > 1, T(1) = 0

 T(n) = 2T(n/2) + n

 = 2[2T(n/4) + n/2] + n

 = 4T(n/4) + n + n

 = 4T(n/4) + 2n

 = 4[2T(n/8) + n/4] + 2n

 = 8T(n/8) + n + 2n

 = 8T(n/8) + 3n

 ………….

 = 2kT(n/2k) + kn

 = nT(1) + kn

 = nlogn

Since,

T(n/2k = 1)

n = 2k

log2
n = log22

k

 = klog2
2

 = k

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Selection Sort

28

• Selection sort is the most simplest sorting algorithm.

• Following are the steps involved in selection sort(for sorting a

given array in ascending order):

 Starting from the first element, search the smallest element in

the array, and replace it with the element in the first position.

 Then move on to the second position, and look for smallest

element present in the subarray, starting from index 2 till the

last index.

 Replace the element at the second position in the original

array with the second smallest element.

 This is repeated, until the array is completely sorted.

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Selection Sort Example

29

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Selection Sort

30

Algorithm Selection(a, n)

{

 for i := 1 to n-1 do

 {

 min := a[i];

 loc := i;

 for j := i+1 to n do

 {

 if (min > a[j]) then

 {

 min := a[j];

 loc :=j;

 }

 }

 temp := a[i]; a[i] := a[loc]; a[loc] := temp;

 }

}
Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Selection Sort

31

Number of comparisons in selection sort:

 (n-1) + (n-2) + (n-3) +……. + 2 + 1

 n(n-1)/2 comparisons

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Greedy Method

32

General Method:

• In the method, problems have n inputs and requires to obtain a

subset that satisfies some constraints.

• Any subset that satisfies these constraints is called feasible

solution.

• A feasible solution should either maximizes or minimizes a given

objective function is called an optimal solution.

• The greedy technique in which selection of input leads to optimal

solution is called subset paradigm.

• If the selection does not lead to optimal subset, then the decisions

are made by considering the inputs in some order. This type of

greedy method is called ordering paradigm.

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Greedy Method

33

Control Abstraction of Greedy Method

Algorithm Greedy(a,n)

// a[1:n] contains n inputs

{

 solution := 0;

 for i :=1 to n do

 {

 x := select(a);

 if feasible(solution, x) then

 solution := Union(solution,x);

 }

 return solution;

}

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Container Loading

34

• Large ship to be loaded with cargo.

• All containers are of the same size but may be of different weights.

• Container i has weight wi.

• The capacity of the ship is C.

• Load the ship with maximum number of containers without exceeding

the cargo weight capacity.

• Find values xi  {0, 1} such that

• And the optimum function is maximized.

• Every set of xi’s that satisfy the constraints is a feasible solution.

• Every feasible solution that maximizes is an optimal solution.

Periyar Govt. Arts College

Cuddalore

 wixi ≤ C 1 ≤ i ≤ n

n

i=1

 xi

n

i=1

 xi

n

i=1

Dr. R. Bhuvaneswari

Container Loading

35

• Ship may be loaded in stages.

• Greedy criterion: From the remaining containers, select the one with

least weight.

Example:

n = 8

[w1, w2, w3, w4, w5, w6, w7, w8] = [100, 200, 50, 90, 150, 50, 20, 80]

C = 400

[x1, x2, x3, x4, x5, x6, x7, x8] = [1, 0, 1, 1, 0, 1, 1, 1]

Periyar Govt. Arts College

Cuddalore

 xi = 6

Dr. R. Bhuvaneswari

Container Loading

36

Algorithm ContainerLoading(c, capacity, numberofContainers, x)

// set x[i] = 1 if and only if container c[i], i ≥ 1 is loaded.

{

// sort into increasing order of weights.

 Sort(C, numberofContainers);

 n = numberofContainers;

 for i = 1 to n do

 x[i] = 0;

 i = 1;

 while ((i  n) && (c[i].weight  capacity))

 {

 x[c[i].id] = 1;

 capacity = capacity – c[i].weight;

 i++;

 }

}
Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Knapsack Problem

37

• Given a set of items, each with a weight and a profit, determine the

number of each item to include in a collection so that the total weight is

less than or equal to a given limit and the total profit is as large as

possible.

• Items are divisible; you can take any fraction of an item.

• And it is solved using greedy method.

Periyar Govt. Arts College

Cuddalore

Dr. R. Bhuvaneswari

Knapsack Problem

38

• Given n objects and a knapsack or bag.

• wi → weight of object i.

• m → knapsack capacity.

• If a fraction xi, 0 ≤ xi ≤ 1 of object i is placed into the knapsack, then a

profit of pixi is earned.

• Objective is to fill the knapsack that maximizes the total profit earned.

• Problem can be stated as

• A feasible solution is any set (x1 …. xn) satisfying equations ② and

• An optimal solution is a feasible solution for which equation ① is

maximized.
Periyar Govt. Arts College

Cuddalore

maximize pi

1 ≤ i ≤n

xi − − − − −①

subject to wixi ≤ m − − − − −②

1≤ i ≤n

0 ≤ xi ≤ 1, 1 ≤ i ≤ n − − − − −③

Dr. R. Bhuvaneswari

Knapsack Problem

39

Example: n = 3, m = 20

 (x1, x2, x3) Σwixi Σpixi

1. (1/2, 1/3, 1/4) 16.5 24.25

2. (1, 2/15, 0) 20 28.2

3. (0, 2/3, 1) 20 31

4. (0, 1, 1/2) 20 31.5

5. (2/3, 8/15, 0) 20 29.5

6. (5/6, 1/3, 0) 20 28.8

Among all the feasible solutions yields the maximum profit

Periyar Govt. Arts College

Cuddalore

④

Weight wi 18 15 10

Profits pi 25 24 15

Dr. R. Bhuvaneswari

Knapsack Problem

40

The greedy algorithm:

Step 1: Sort pi/wi into nonincreasing order.

Step 2: Put the objects into the knapsack according to the sorted
sequence as possible as we can.

e. g.

n = 3, M = 20

(w1, w2, w3) = (18, 15, 10)

(p1, p2, p3) = (25, 24, 15)

Sol: p1/w1 = 25/18 = 1.39

 p2/w2 = 24/15 = 1.6

 p3/w3 = 15/10 = 1.5

Optimal solution: x1 = 0, x2 = 1, x3 = 1/2

Periyar Govt. Arts College

Cuddalore

Weight wi 15 10 18

Profits pi 24 15 25

Dr. R. Bhuvaneswari

Knapsack Problem

41

Periyar Govt. Arts College

Cuddalore

Weight wi 15 10 18

Profits pi 24 15 25

Algorithm GreedyKnapsack(m, n)

//n objects are ordered such that p[i]/w[i] ≥ p[i+1]/w[i+1].

{

 for i:= 1 to n do x[i] := 0.0;

 U := m;

 for i := 1 to n do

 {

 if (w[i] > U) then break;

 x[i] :=1.0;

 U := U-w[i];

 }

 if (i ≤ n) then

 x[i] = U/w[i];

}

x[i] = 0.0 m = 20, n = 3

x[2] = 0.0

x[3] = 0.0

U = 20

i = 1

x[1] = 1; U = 5

i = 2, 10 > 5

x[2] = 5/10 = 1/2

x[1] = 1, x[2] = 1/2, x[3] = 0

