COMPUTER GRAPHICS
UNIT-II

R.MANIMEGALAI

DEPARTMENT OF COMPUTER SCIENCE
PERIYAR GOVT ARTS COLLEGE
CUDDALORE.

Attributes of Output
Primitives
Structure :

< Definition

“Line Attribute

< Curve Attribute

<Color and Grayscale Level

Introduction

The way a primitive is to be displayed is referred to as an
Attribute Parameter.

Some attribute parameters include color ,size etc.

Different ways to incorporate attribute changes :
. Extend the parameter list associated with each primitive

. Maintain a system list of current attribute values and
te functions to set attributes.

LINE ATTRIBUTES

» Basic attributes of a straight line segment are its
type, its width, and its color.

» In some graphics packages, lines can also be
displayed using selected pen or brush

Line Type

» The line-type attribute include solid lines, dashed
lines, and dotted lines. We modify a line drawing
algorithm to generate such lines by setting the length

and spacing of displayed solid sections along the line
path.

» A dashed line could be displayed by generating an
inter dash spacing that is equal to the length of the
solid sections. Both the length of the dashes and the

inter dash spacing are often specified as user options.

w

A dotted line can be displayed by generating very
short dashes with the spacing equal to or greater than
the dash size.

To set line type attributes in a PHICS application
program, a user invokes the function

setLinetype (It)
where parameter It is assigned a positive integer value
of 1,2,3, or 4 to generate.

lines that are, respectively, solid, dashed, dotted, or
dash-dotted.

Figure 41

Ploting three data sets with three
differery. lune types, as output by the
e e TG i OIS OGNS

» Raster line algorithms display line-type
attributes by plotting pixel spans.

» For the various dashed, dotted, and dot-
dashed pattern..,, the line-drawing procedure.

» outputs sections of contiguous pixels along the
line path, skipping over a number of
intervening pixels between the solid spans.

» Pixel counts for the span length
and interspan spacing can be
specified in a pixel mask, which is
a string containing the digits | and
0 to indicate which positions to
plot along the line path.

» The mask 1111000, for instance,
could be used to display a dashed
line with a dash length of four
pixels and an interdash spacing of
three pixels.

Line Width

» Line- width options depends on the capabilities of
the output device. A heavy line on video monitor
could be displayed as adjacent parallel lines, while
a pen plotter might require pen changes.

» We set the line-width attribute with the command:
using
setLineWidthScaleFactor(lw);

» Line-width parameter Iw is assigned a positive
number to indicate the relative width of the line to
be displayed..

» A value of 7 specifies a standard-width line. on pen
plotter, for instance, a user could set lw to a value of
0.5 to plot a line whose width is half that of the

standard line. Values greater than 1 produce lines
thicker than the standard.

» For raster implementation, a standard-width line is
generated with single pixels at each sample position.

» Other-width link line Attributes are displayed as
positive integer multiples of the standard line by
plotting additional pixels along adjacent parallel line

» For lines with slope magnitude less than 1, we
can modify a line-drawing routine to display
thick lines by plotting a vertical span of pixels
at each x position along the line. The number
of pixels in each span is set equal to the
integer magnitude of parameter Iw.

§ ey g— A — i —) — 4

Figure 4-3
Double-wide raster line with slope (m| < 1 generated with
vertical pixel spans

» For lines with slope magnitude greater than 1,
we can plot thick lines with horizontal spans,
alternately picking up pixels to the right and
left of the line path.

Figure 4 4

Raster line with slope im| >

and hine-width parameter 1w = 4
plotted with hortzontal pixel spans

» We can adjust the shape of the line ends to give
them a better appearance by adding line caps.

» One kind of line cap is the butt cap obtained by
adjusting the end positions of the component
parallel lines so that the thick line is displayed
with square ends that are perpendicular to the
line path.

» If the specified line has slope m, the square end
of the thick line has slope-1/m.

Another line cap is the round cap obtained by
adding a filled semicircle to each butt cap.

The circular arcs are centered on the line
en.dEoints and have a diameter equal to the line
thickness.

A third type of line cap is the projecting square
cap.

Here, we simply extend the line and add butt
caps that are positioned one-half of the line
width beyond the specified endpoints.

22 &

-——

Figure 4-5

—— — — - - — — — " — D e —

Thick lines drawn with (' butt caps, (b) round caps, and (<) projecting
square caps

» We can generate thick polylines that are
smoothly joined at the cost of additional
processing at the segment endpoints.

» There three possible methods for smoothly
joining two line segments.

» miter join
» round join
» bevel join.

» A miter join is accomplished by
extending the outer
boundaries of each of the two
lines until they meet.

A round join is produced by
capping the connection
between the two segments
with a circular boundary whose

diameter is equal to the line
width.

a belevel join is generated by
disglaying the line se?ments
with butt caps and filling in the

triangular gap where the
segments meet.

S

—_—

Faun 44
Thacn e s compeced with Gy maer o, ' mnd oo, id ¢
beve o

Pen and Brush Options

» With some packages, lines can be displayed
with pen or brush selections.

» Options in this category include shape, size,
and pattern.

Custom Document Brushes

» These shapes can be stored in a pixel mask

» that identifies the array of pixel positions that
are to be set along the line path.

(m)

Figure 4-8

(a) A pixel mask for a rectangular
pen, and (b) the associated array of
pinels displayed by centening the
mask over a specified pixel
position,

Figure 4-9

— ' . . : Generating a line with the pen
| shape of Fig 48
Figeure 8-10 -

Curved lines drawn with a paint program using various shapes and
patterns. From left to right, the brash shapes are square, round,
diagonal line, dot patiern, and faded airbrush

Line Color

» A polyline routine displays a line in the
current color by setting this color value in
the frame buffer at pixel locations along the
line path using the setpixel procedure. The
number of color choices depends on the
number of bits available per pixel in the
frame buffer.

» We set the line color value in PHICS with the
function

setPolylineColourlndex (lc)

» Nonnegative integer values, corresponding to
allowed color choices, are assigned to the line
color parameter Ic.

» A line drawn in the background color is
invisible, and a user can erase a previously
displayed line by respecifying it in the
background color.

» An example of the use of the various line
attribute commands in an applications
program is given by the following sequence
of statements:

v

setLineType (2) ;
setLinewidthScaleFactor (2 : ;
setPolylinesColourindex (5),
polyline (n |, wcpolnts1) :
setPolyline:clourindex (61 ;

» polyline (nl ,wcpoints2) :

v

v

b

b 4

CURVE ATTRIBUTES

» Parameters for curve attributes are the same as
those for line segments. We can display curves
with varying colors, widths, dotdash patterns,
and available pen or brush options. Methods
for adapting curve-drawing algorithms to
accommodate attribute selections are similar
to those for line drawing.

CURVE ATTRIBUTES

» Raster curves of various widths can be
displayed using the method of horizontal or

vertical pixel spans. Where the magnitude of
the curve slope is less thanl, we plot vertical

spans; where the slope magnitude is greater
than 1, we plot horizontal spans.

Figure 4-12
A dashed circular arc displayed
with a dash span of 3 plxels and an

interdash spacing of 2 puvels

Figure 4-13
Circular arc of width 4 plotted with
pexel spans

HAHH
n”
; 117
)
“ -
. -!—+-0
—-
™ T Fgewin
' —t= A crcular arc of width 4 and radius
I 16 displayed by hliing the repion

between two COnCentrc ancs

- - —
] |
—4»‘!-- - 4 -* 4
|
S - “
I 1 .
SR -
|

Figure 4-15
Circular arc doplayed with »
rectangular pen

COLOR AND GRAYSCALE LEVELS

» General purpose raster-scan systems, usually
provide a wide range of colors, while random-
scan monitors typically offer only a few color
choices, if any.

» Color options are numerically coded with values
ranging from O through the positive integers.

» For CRT monitors, these color codes are then
converted to intensity level settings for the
electron beams. With color plotters, the codes
could control ink-jet deposits or pen selections.

lllll
AL

» In a color raster system, the number of color
choices available depends on the amount of
storage provided per pixel in the frame buffer.

» color-information can be stored in the frame buffer
in two ways: We can store color codes directly in
the frame buffer, or we can put the color codes in a
separate table and use pixel values as an index into
this table.

» With the direct storage scheme, whenever a
particular color code is specified in an application
program, the corresponding binary value is placed
in the frame buffer for each-component pixel in
the output primitives to be displayed in that color.

» A minimum number of colors can be provided
in this scheme with 3 bits of storage per pixel,

as shown in Table.

TABLE 41
THE FIGHT COLOR CODES FOR A THKEE @11

PER MIXEL FRAME BLIIFER

Stored Color Values Displayed

Color n Frame Bufer Color
Code RED CREEN BLUE

0) 0 0 Black

' 0 | Blue

0] 0 Ceeen

! | I Cyan

4 ! 0 0 Red

5 ! 0 | Magenta

- | | O Yellow

y 1 |)

While

» Each of the three bit positions is used to control
the intensity level (either on or off) of the
corresponding electron gun in an RGB monitor.

» Adding more bits per pixel to the frame buffer
increases the number of color choices. With 6 bits
per pixel, 2 bits can be used for each gun.

» This allows four different intensity settings for
each of the three color guns, and a total of 64
color values are available for each screen pixel.

» With a resolution of 1024 by 1024, a full-color
(24bit per pixel) RGB system needs 3
megabytes of storage for the frame buffer.

» Color tables are an alternate means for
providing extended color capabilities to a user
without requiring large frame buffers.

» Use of color tables to reduce frame-buffer
storage requirements.

Color Tables

» A possible scheme for storing color values in a
color lookup table (or video lookup
table),where frame-buffer values art- now used
as indices into the color table.

» A user can set color-table entries in a PHIGS
applications program with the function

setColourRepresentation (ws, ci, colorptrl)

Color
Lookvp

S e To Red Gun

== To Green Gun

[To Bige Gun

Figure 4-16

A color lookup table with 24 buts per entry accessed from a frame buffer with 8 bits per
pixel. A value of 196 stored at pixel position (x, y) references the location in this table
containing the value 2081, Each 8-bit segment of this entry controls the intensity level of
one of the three clectron guns in an RGE monitor.

» Parameter ws identifies the workstation output
device; parameter ci specifies the color index,
and parameter colorptr points to a hio of RGB
color values (r,g, b) each specified in the range
from O to 1.

» An example of possible table entries for color
monitors is given

-
-~

=] e] o]

0.0 m ‘ 0 ... %)
!
! 0.0.00 ’ | . LN

182 ’ 0.002. 0.1 . ‘

Figure 4-17
Workstation color tables

» There are several advantages in storing color codes
in a lookup table.

1."reasonable” number of simultaneous colors
without requiring large frame buffers.

2. For most applications, 256 or 512 different colors
are sufficient for a single picture.

3. Table entries can be changed at any time.

4. Visualization applications can store values for

some physical quantity, such as energy, in the
frame buffer and use a lookup table to try out

various color encodings without changing the pixel
values.

Grayscale

» With monitors that have no color capability,
color functions can be used in an application
program to set the shades of gray, or
grayscale, for displayed primitives.

» Numeric values over the range from 0 to 1 can
be used to specify grayscale levels, which are
then converted to appropriate binary codes for
storage in the raster.

» When multiple output devices are available at
an installation, the same color-table interface
may be used for all monitors.

» with the display intensity corresponding to a
given color index ci calculated as

intensity = 0.5[min(r, g, b) + max(r, g, b)]

AREA-FILL ATTRIBUTES

» Options for filling a defined region include a
choice between a solid color or a patterned
fill and choices for the particular colors and
patterns. These fill options can be applied to
polygon regions or to areas defined with
curved boundaries, depending on the
capabilities of the available package. In
addition, areas can be painted using various
brush styles, colors, and transparency
parameters.

Fill Styles

» Areas are displayed with three basic fill
styles: hollow with a color border, filled
with a solid color, or filled with a ol
specified pattern or design.

» A basic fill style is selected in a PHIGS
program with the function

setInteriorStyle ([s)

» Values for the fill-style parameter fs
include hollow, solid, and pattern.

Figum 4-18
Folygon (1l styles

» Another value for fill style is hatch, which is used to
fill an area with selected hatching patterns-parallel
lines or crossed lines.

11111117177 LTI

Diagonal D sgonal
Hateh Cross Match Fin

Figure 4-19
Polygon fill using hatch pattoerns,

» Hollow areas are displayed using only the boundary
outline, with the interior color the same as the
background color.

» A solid fill is displayed in a single color up to
and including the borders of the region.

» The color for a solid interior or for a hollow
area outline is chosen with

setInteriorColour Index (fc)

» where fill color parameter fc is set to the
desired color code.

» A polygon hollow fill is generated with a line
drawing routine as a closed polyline.

» Solid fill of a region can be accomplished with
the scan-line procedures.

» Other fill options include specifications for
the edge type, edge width, and edge color of
a region.

» These attributes are set independently of the
fill style or fill color, and they provide for the
same options as the line-attribute parameters

Pattern Fill

» We select fill patterns with

» where pattern index parameter pi specifies a
table position. For example, the following set
of statements would fill the area defined in the
fill Area command with the second pattern
type stored in the pattern table:

» setinteriorStyle (pattern);
» setinteriorStylelndex (2) ;
» fillArea (n, points);

» For fill style pattcm, table entries can be
created on individual output devices with

» SetPatternRepresentation (w s , p., nx, ny, cp)

» Parameter pi sets the pattern index number

for workstation code ws, and ¢p is a two-
dimensional array of color codes with nx

columns and ny rows.

» Color array cp in this

¥ TABLE 4-3
example specifies a e O
pattern that produces PATTERN TABLE WITH
alternate red and black WO ENTRIES, USING

diagonal pixel lines on an THE COLOR CODES Of

[ABLE 4-)
eight-color system. S
(pi/ (Cp/)
» When a color array cp is . [(]
to be applied to hll a 0 4
region, we need to
specify the size of the 2 1 2
area that is to be covered 2 [: : ;'

by each element of the —
array.

» We do this by setting the rectangular
coordinate extents of the pattern:

‘?If* l

]

setpatternsize (dx, dy) ‘-'f‘“*f | *“*' !

» where parameters dx and dngive the
coordinate width and height of the array
mapping.

» A reference position for starting a pattern fill

IS assigned with the statement
setPatcernReferencePoint (position)

W<
.......

......
WAL

........
llllllll

» Parameter posit ion is a pointer to coordinates
(x p, yp) that fix the lower left corner of the
rectangular pattern.

» From this starting position, the pattern is
replicated in the x and y directions until the
defined area is covered by nonover-lapping
copies of the pattern array.

» The process of filling an area with a
rectangular pattern is called tiling and

» Rectangular fill patterns are
sometimes referred to as tiling

patterns.
» To illustrate the use of the
pattern commands, the

following program example
displays a black-and-white
pattern in the interior of a
parallelogram fill area.

=

-”"
> om O K
it ol BT

---) . -) “.i
Ses - T T 2

Figosrwe 4-22

prevsmtum e the dlimgrlay (I

A prattarmn arrey (o) supreriomnpeosest omn o paralicbogram G0 area o

Position ™™

Figure §-21

Tiling an area from a
designated start position
Nonoverlapping adjacent
patterns are laid out to cover
all scan lines passing through
the defined area

fdefine WE .

void patternFill ()

{
wePt2 ptsid);
int bwPattern(3)(3) = (1, 0,0, 0, 1,1, 1,0, 0);

pSetPatterniepresentation (WS, 8, 3, 3, bwPattern);

pts|0].x = 10; pts[0).y = 10;
ptefl].x = 20; pts(l).y = 10;
pts(2].x = 28, pts(d].y = 18;

pts[3).x = 18; pts[d]).y = 18;
pSetFillArealnteriorStyle {PATTERN);
pSetFillAreaPatternindex (8);
pSetPatternReferencePoint (14, 1l);

pFillArea (4, pts);

» Hatch fill is applied to regions by displaying
sets of parallel lines. The fill procedures are
implemented to draw either single hatching or
cross hatching.

» Spacing and slope for the hatch lines can be set
as parameters in the hatch table.

» On raster systems, a hatch fill can be specified

as a pattern array that sets color values for
groups of diagonal pixels.

» In many systems, the pattern reference point
(Xp,yp) is assigned by the system.

» For any fill region, the reference point can be
chosen as the lower left corner of the
bounding rectangle (or bounding box)
determined by the coordinate extents of the
region.

(igure 4-213

Bounding rectangle ltor a region
with coordinate extents X X ..
Voucand v . inthe yand v
directions

» If the row positions in the pattern array are
referenced in reverse (that is, from bottom to top
starting at |), a pattern value is then assigned to
pixel position (1, y) in screen or window
coordinates as

» setpixel X,y, coly modny + 1, x modnx + 1))

» Where ny and nx specify the number of rows and
number of columns in the pattern array

» The pattern and background color

can be combined using Boolear
operations, or the pattern color AN
can simply replace the backgrount o
colors. el

- | i z

» How the Boolean and replac
operations for a 2 by 2 fill patteri
would set pixel values on a binar
(black and white) system against ;

Combertng 0 &2 patiern with ¢ dackprmana puthers Larg

particular background pattern. b o = 5 2

e v

-l
-

e

Soft Fill

» Modified boundary-fill and flood-fill procedures
that are applied to repaint areas so that the fill
color is combined with the background colors are
referred to as soft-fill .

» One use for these fill methods is to soften the fill
colors at object borders that have been blurred to
antialias the edges.

» Another is to allow repainting of a color area that
was originally filled with a semitransparent brush,
where the current color is then a mixture of the
brush color and the background colors "behind”
the area. In either case, we want the new fill color
to have the same variations over the area as the
current fill color.

CHARACTER ATTRIBUTES

» The appearance of displayed characters is
controlled by attributes such as font, size,
color, and orientation.

» Attributes can be set both for entire character
strings (text) and for individual characters
defined as marker symbols.

Text Attributes

» First of all, there is the choice of font (or
typeface), which is a set of characters with a
particular design style such as New York,
Courier, Helvetica, London, 'Times Roman,
and various special symbol groups.

» The characters in a selected font can also be
displayed with assorted underlining styles
(solid, dotted , double), in boldface, in /talics.
and in outline or shadow styles.

» A particular font and associated style is selected
in a PHIGS program by setting an integer code for
the text font parameter t f in the function.

setTextFont(tf)

» Color settings for displayed text are stored in the
system attribute list and used by the procedures

that load character definitions into the frame
buffer.

» When a character string is to be displayed, the
current color is used to set pixel values in the
frame buffer corresponding to the character
shapes and positions

» Control of text color (or intensity) is managed
from an application program with

setTextColorindex(tc)

» where text color parameter tc specifies an
allowable color code.

» Character size is specified by printers an

compositors in points, where 1 point is
0.013837 inch.

» Point measurements specify the size of the
body of a character but different fonts with the
same points specifications can have different
character size depending on the design of the
typeface.

» The distance between the bottom line and the
top line of the character body is the same for all

characters in a particular size and typeface, but
the body width may vary.

» Character height is defined as the distance

between the baseline and the cap line of
characters.

» Text size can be adjusted without changing the
width-to-height ratio of characters with

setChatacterHeight(ch)

» Parameter ch is assigned a real value greater than O
to set the coordinate height of capital letters: the
distance between baseline and capline in user
coordinates.

Height |

Height 2
Height 3 ot e

nu\’ Tol

» The width only of text can be set with the
function

setCharacterExpansionFactor(cw)
» where the character-width parameter cw is

set to a positive real value that scales the
body width of characters.

wdh0S
width 1.0

swacieckx =2 O

Jigure 4-27

T he effect of different
character-width setangs on
displayed toxt

» Spacing between characters is controlled
separately with

setCharacterSpacing(cs)

» where the character-spacing parameter ¢s can
he asslgned any real value. The value assigned
to ¢s determines the spacing between character

bodies along print lines.

» Negative values for cs overlap character bodies;
positive values insert space to spread out the
displayed characters. e

Spacing O_.5

T he effect of different
character spacings on
cdisplayead text.

» The orientation for a displayed character
string is set according to the direction of the
character up vector:

» setCharacterUpVector(upvect)

» Parameter upvect in this function is assigned
two values that specify the x and y vector
components.

» Text is then displayed so that the orientation
of characters from baseline to capline is in
the direction of the up vector.

» For example, with upvect = (I, I), the direction
of the up vector is 45" and text would be
displayed

J
4
. 9,
4'/_.'
| ,+" T T -
‘ Figure 429

Direction of the up vector (a)
controls the oneatation of

al () dl&P‘JV(\’ text (b

Up Veclor 4 PR

L

Dwection of
Chacacter up Yector

‘a

N

‘t-.,/ \%

Teat Pt Duwection
1)

»

Frguee 3-12

An up-vector specfication (a)
controls the direction of the
rext path (b)

4
‘.C.
’ g
’\J ¥
<
N '7:
w b
I'gl.rr 1

The 45" up vector n Fig 402

produces the display (a) for a
scam path and the display (b)

for a right path

» It is useful in many applications to be able to
arrange character strings vertically or
horizontally. An attribute parameter for this
option is set with the statement

s setTextPath(tp)

» where the text-path parameter tp can be
assigned the value: right, left, up, or down.

» A procedure for implementing this option must
transform the character patterns

into the specified orientation before
transferring them to the frame buffer

» Another handy attribute for character strings is
alignment. This attribute specifies how text is to

be positioned with respect to the start
coordinates. Alignment attributes are set with
setAlignment(h,v)
» where parameters h and v control horizontal and
vertical alignment.

» Horizontal alignment is set by assigning h a
value of left, centre, or right.

» Vertical alignment is set by assigning v a value
of top, cap, half, base, or bottom

| top

l l(lN(x :,::. —

bomom
(cnau nom
“ lop
g T Cap
R
[nalt
l
| N
t('_lb.“ B e e e e et 2 s
S g NOwnem Figure 4-W
left - gt AlLgnment attribute values for

canter horzontal and vertical stnings.

» A precision specifici~tionf or text display is given
with

setTextPrecision(tpr)

» where text precision parameter tpr is assigned one
of the values: string, char, or stroke.

» The highest-quality text is displayed when the
precision parameter is set to the value stroke

Marker Attribute:

» A marker symbol is a single character that can he
displayed in different colors and in different sizes.

» We select a particular character to be the marker

symbol with

> setMarkerType(mt)

; whcfre marker type parameter mt is set to an integer
code.

» Typical codes for marker type are the integers 1
through 5,

» specifying, respectively, a dot (.), a vertical cross (+),
an asterisk (*), a circle (o), and a diagonal cross (X).

Displayed marker types are centered on the marker
oordinates.

-

» We set the marker size with

setMarkerSizeScaleFactor (ms)

» with parameter marker size ms assigned a
positive number.

» Values greater than 1 produce character
enlargement; values less than 1 reduce the
marker size.

Inquiry functions

Introduction: Current settings for attributes and other parameters, such as workstation types and status, in the system
lists can be retrieved with inquiry functions. These functions allow current values to be copied into specified parameters,
which can then be saved for later reuse or used to check the current state of the system if an error occurs.

We check current attribute values by stating the name of the attribute in the inquiry function. For example, the functions

inquirePolyLinelndex (last li)and

inquireInteriorColourIndex (last fc)

Copy the current values tor line index and fill color into parameters lastli and lastfc. The following program segment
illustrates reusing the current line type value after a set of lines are drawn with a new line type.

2D TRANSFORMATIONS
COMPUTER GRAPHICS

2D Transformations

“Transformations are the operations applied to
geometrical description of an object to change its
position, orientation, or size are called geometric
transformations”.

Translation

“ Translation is a process of changing the position
of an object in a straight-line path from one co-
ordinate location to another.

“* We can translate a two dimensional point by
adding translation distances, tx and ty.

* Suppose the original position is (x ,y) then new
position is (x’, y’).
“ Here x’=x + tx and y’=y + ty.

——

Click icon to add picture

P(x". y"),

Translation

“ Matrix form of the equations:
X'=X+tx and Y'=Y+ty is

“ we can write it,
P'=P+T

* Translate a polygon with co-ordinates A(2,5) B(7,10) and C(10,2) by 3

s 1\

W

units in X direction and 4 units in Y direction.
5
C'=C+T

A= AT
3] = [5
Y/ -

B' = B+T
= [10| + [3 | = 13
)

Rotation

+ A two dimensional rotation is applied to an object by
repositioning it along a circular path in the xy plane.

+ Using standard trigonometric equations , we can express
the transformed co-ordinates in terms of # and @ as

X" =rcos(¢p + 0) = r cospcosd — r singsind
y' =rsin(¢ + 0) = r cos¢sing + r singcosd
+ The original co-ordinates of the point is

X =TI COS ¢

y=rsin¢

After substituting equation 2 in equation 1 we get
x'=x cosfl ~ ysin 8
Y'=x sinf + y cosf

Rotation

"> That equation can be represented in matrix form
[x' y'] =[x y] cosé sin#
-sinf cos#
» we can write this equation as,
PP=P.R
<~ Where R is a rotation matrix and it is given as

R = cosfél sinf
-sinf cosé

+ A point (4,3) is rotated counterclockwise by angle of 45.
find the rotation matrix and the resultant point.
» R= [cose sinGJ = E:os45 sin45

-sinf cosé -sind5 cos4

= 1/12 1/12
Lun 1/
Pr=[4 3112 1n
[-urz 1/12]
= (4112 <312 4112 + 3112

= [(1/12 7112

Scaling

“ A scaling transformation changes the size of an object.

“ This operation can be carried out for polygons by
multiplying the co-ordinates values (x , y) of each vertex

by scaling factors Sx and Sy to produce the transformed
co-ordinates (x', y’).

Mo XL SY
y'=y.Sy
“ |n the matrix form

(X" y']=[x y][Sx O
0 Sy

=P.S

Scaling

- Uniform Scaling Un-uniform Scaling

Bl

\

Homogeneous co-ordinates for Translation

“ The homogeneous co-ordinates for translation are given as

T=(1 0 0)
0 1 0
tx ty 1

< Therefore , we have
[x’ y' 1] = [x y 1]

Homogeneous co-ordinates for rotation

"+ The homogeneous co-ordinates for rotation are given as

R= [coséd sind 0O
-sinf cosé# 0
0 0
+ Therefore , we have
[x’ y' 1]-[xy1] cos# sin@ 0
-sind cosé# 0
0 0 1

Rt

=[xcosa-ysin9 X sinf +y coséd 1]

Homogeneous co-ordinates for scaling
* The homogeneous co-ordinate for scaling are given as
S={Sx 0 0
(O Sy 0
0 0 1,
“ Therefore , we have
[y 1]= [x y 1] Sx 0 0)
0 Sy 0
0 0 1)
=[x.5x y.Sy 1]

Composite Transformations
(A) Translations

If two successive translation vectors (.t) and (t ..t ,) are applied to a
coordinate position P, the final transformed location P’ is calculated
as; -

=T {100)

=T - T L)) P

Where P and P" are represented as homogencous-coordinate column
vectors. We can verify this result by calculating the matrix product for
the two associative groupings. Also, the composite transformation
matrix for this sequence of transformations 1s: -

1 0 t, & Nty + 0+,
0yt .| 01, = |0 1T L
0 0 1 0 0 1 0 0 1

Or Tlat): Tty = T t4)
Which demonstrate that two successive translations are additive.

(B) Rotations

Two successive rotations applied to point P produce the transformed
position: -

P'= R(O,). {R(O,). P}

={R(©,).R(©,)} . P
By multiplication the two rotation matrices, we can verify that two
successive rotations are additive:
R(©,) .R(O,)=R((O,+0,)

So that the final rotated coordinates can be calculated with the

composite rotation matrix as: -
P’=R(©,+6,).P

(C) Scaling

Concatenating transformation matrices for two successive scaling
operations produces the following composite scaling matrix: -

S, 0 0 S, 0 0 S48, 0 o
0 5,0 0 8,0 | =] © s,S, 0
0 0 1 0 0 1 0 0 1
Or, $(S,,,S,,) . S(S,,. S,) = S(S,,.5,,.5,,.S,,)

The resulting matrix in this case indicates that successive scaling
operations are multiplicative.

General pivot point rotation

* Translate the object so that pivot-position is moved to the
coordinate origin

* Rotate the object about the coordinate origin
* Translate the object so that the pivot point is returned to its

original positio
| A(& A | | b
(c)

(d)

0ﬂ9m| Position Translatuon of Rotation was T"'M"“"“. 1 of the object
of Object and object so that about origin ”m?dbmm“ s
pivot point pivot point (x.y,)

is at origin Xy

General fixed point scaling

Translate object so that the fixed point coincides with the
coordinate origin

Scale the object with respect to the coordinate origin

Use the inverse translation of step 1 to return the object to its
original position

s M

/- \

(a) (b)
Original Position Transiation of (©) @
of Objectand Object so that scalingwas Translation of the object
Fixed point fixed point about origin s that the Fixed point
(X.¥yis at origin is retumed to position

Xy,

Other transformations

* Reflection is a transformation that produces a mirror image of
an object. It is obtained by rotating the object by 180 deg about
the reflection axis

4 Reflection about the line y=0, the
Original position _ ayis |, is accomplished with the
transformation matrix

3 100
010
0 0 1

2

Reflected position

Reflection

Original position Reflected position

2 ' Reflection about the line x=0, the
> 1 1“
3

Y- axis , is accomplished with the
transformation matrix
3

o o
o = o
-0 O

Reflection of an object w.r.t the
straight line y=x

Y-axis ¥
Orlglnsal position 1 00
0 0 1
2 1
Reflected position
Origin_ O : X-axis

(0.0)

Shear Transformations

* Shear is a transformation that distorts the shape of
an object such that the transformed shape appears
as if the object were composed of internal layers
that had been caused to slide over each other

* Two common shearing transformations are those
that shift coordinate x values and those that shift y
values

Shears

[

> > »

.

Original Data y Shear X Shear

